SCASM Crashing-Models tutorial by Corrado La Posta

Introduction

--

The goal: to have your planes break in parts when shot down, much like stock ones.

--

The fix: this is only a particular solution; many more, different ways, could be.

It requires four main steps:

step 1) decompile the source and access the BGL directly.

step 2) insert the instructions to let the MDL recognize the appropriate flag.

step 3) recompile the MDL

step 4) cut and paste the BGL into a true CFS1/CFS2 MDL file.

--

Required knowledge: you have to be familiar with programming tecniques; this will require a procedure much like the one used in the SCASM AI ANIMATIONS tutorial; if you have understood that one be sure that this one will be much simpler.

--

The tools: You will need some software tools to work with, mainly a SCASM compiler-decompiler and an HEX editor.

SCASM tools: many excellent ones on Trevor de Stigter site: http://www.globe.net.nz/~tdestig/index.htm.

HEX editor: many are available as freeware on the NET; I use Frheddy, have a look at:

http://hotfiles.zdnet.com/cgi-bin/texis/swlib/hotfiles/info.html?fcode=000VOX&b=

--

Part 1: the crashing flag

Get your SCASM assembler-disassembler; I will refer hereafter to MdlDisAs by Trevor de Stigter. Open the aircraft MDL (I4ba65p1.mdl in the example) file and access the BGL code.

You will see something like this:

[image: image1.png]
You will go adding just one instruction throughout the file, this one, highlighted in red

IfVarAnd (:L001234 90 0008)

Var 90 is the crashing flag; if the flag equals the value 0008 the program will jump to label :L001234 (a value of your choice here; the important thing is that the label being immediatly followed by a RETURN instruction; choose an existing one, not too far from the point where you insert the IfVarAnd instruction, if you want to avoid compiling errors).

You will use the IfVarAnd to skip the code of that part. I put them immediatly before a POINT or VECPOINT instruction.

In fact CFS1/CFS2 acts this way:

· when the plane is destroyed, say because you have destroyed a wing, the flag is set to an appropriate value (see table below).

01 The flag corresponds to appropriate values in the DP, mainly in the BREAK instructions

· The plane is split in two or three parts, each one being an ENTIRE plane of which only SOME parts are shown

· If your plane MDL is not instructed to recognize this, you have the RESPAWNING problem

· You can fix the RESPAWNING prob cutting the values in the BREAK instructions in the DP; the plane will remain ONE only but you will loose the possibility of having Crashing Models

· Adding the IfVarAnd instruction simply tells the model wich parts are to be shown and which are not

· Imagine, for sake of simplicity, that the plane breaks in two parts only; CFS produces TWO planes, the first instructed to show certain parts, the other showing the remaining ones.

· If your FSDS/AA (or whatelse) models don’t have those instructions you will have the Respawning

02 Here is a table of the corresponding parts for var 90 derived from an interesting post by Yeager at CFS2online; enlightening paper on this subject by Bill Potvin at:

http://www.cfsops.com/Default.htm

Table

02 Break parameter / part / var 90 value

03 / Left-wing / 0001

04 / Right-wing / 0002

05 / Tail / 0004
06 / Left-wingtip / 0100

07 / Right-wingtip / 0200

08 / Nose / 0800

09 / Engine 1 / 1000

010 / Engine 2 / 2000

011 / Engine 3 / 4000

012 / Engine 4 / 8000

013 / Elevator

014 / Elevator

015 / Rudder

None
/ Crew / 0080

None
/ Fuselage / 0008
There is an exact correspondence between the values you have to insert in the MDL and the values in the BREAK instructions in the DP. Have a look at a stock aircraft DP to understand the usage.

You will find instruction like this one:

[EFFECTS.11]

; System = Port Wing Structure

Location = -0.698,-0.355,-0.676

effect.0=10,LIBRARY,fx_smkpuff_s,

effect.1=30,LIBRARY,fx_intsmoke,

effect.2=60,LIBRARY,fx_wingfire,

effect.3=95,LIBRARY,fx_airexpl_s,

effect.4=100,BREAK,1,

So insert the following instruction before the code refering to PORT WING or PORT FLAP, etc…

IfVarAnd (:L001234 90 0001)

This one for parts belonging to fuselage

IfVarAnd (:L001234 90 0008)

Etc…

You will have now to add that instruction for EACH part of your plane. Tedious? Yes, but I am sure you can find your way to fasten the entire process.

How can you recognize which part of the SCASM code refers to which piece of the plane? This is a bit tricky; you can see which BITMAP is loaded in that portion of the code and use it as a reference; or have a look at the coordinates, they will suggest you many things.

Finished adding the new instructions ?

Save the source; compile it; save the new MDL with a new name !

Part 2: Building the new MDL

Once you’ll have modified the BGL code it will not work anymore inside the original MDL. You have to cut and paste it inside a true CFS1/CFS2 mdl. Use the enclosed CFS1EMPTY.MDL or CFS2EMPTY.MDL. You will use the HEX editor to do this part of the job.

· Find the start of the BGL in the new MDL you have saved; in the following example it starts at HEX 10ac

[image: image2.png]
· Copy the BGL code only; you need the header and footer of the new *.mdl file to remain unchanged. Select the code until you reach a long serie of zeros and copy it

[image: image3.png]
· Paste it in the CFS1EMPTY.MDL. Using CFS1EMPTY.MDL you will paste the code starting at HEX a34; your BGL code will have not to exceed 130 kb size.

Use CFS2EMPTY.MDL file if you intend to make a larger, multi-res plane, for CFS2; BGL is starting at HEX 3304 here.

[image: image4.png]
· Replace the original plane’s MDL with this one

YOU DID IT!

Maybe you’ll find your animations are no more working; Of course, read the SCASM AI ANIMATION tutorial to understand why!

At present I don’t know if there is a way to insert the crashing feature in a standard FSDS/AA model; my guess is that this way exists, I bet it will be inserted in one of the next releases of FSDS.

Corrado

Mc5834@mclink.it
http://www.isoliti4gatti.com

July, 20th, 2001

� EMBED PhotoStylerImage ���

� EMBED PhotoStylerImage ���

� EMBED PhotoStylerImage ���

[image: image5.png][image: image6.png][image: image7.png]_1047021363

_1047021607

_1047021170

