Transform Matrices:

At the time we don’t know much about this area. Basicly you could use the Transform command for manipulating objects like Manfred Moldenhauer wrote:

--

Transform_Mat(

 in_x in_z in_y

 m00 m01 m02

 m10 m11 m12

 m29 m21 m22

)
 - 2.43 / FS2K

 All matrix values are _real_ numbers

 It seems that the following code is manipulated

 according to the matrix values (m##).

 See also TransformEnd.

 ...

 Transform_Mat(

 -1 1021 900

 1 0 0

 0 1 0

 0 0 1

)

 VecPoints(...)

 Specular(0)

 LoadBitmap(0 1 EF 128 128 128 xyz.bmp)

 ShadedTexPoly(...)

 ...

 TransformEnd

 ...

TransformEnd
 - 2.43 / FS2K

 This instruction marks the end of the code

 handled by Transform_Mat().

 There must be ONE TransformEnd for EVERY

 Transform_Mat() !

During the past weeks we have done some experiments with the Light command. The thoughts / results are attached at the end of the description of the Transform Matrices section in MAT’s Scasm Editor.

To get familiar with this part of the Editor you should try the following:

If the window comes up you will see 5 matrices with input fields. The values in the “Translate” matrix set the offset to the RefPoint and will be shown in the first line of the command.

If you enter a value in the “Scale” matrix this is scaling the transformed object on the depending axis. Important: At the time the scaling seems to work only for CFS2 !

The other three matrices are for rotation. Basicly you should use the “Fill values” field to enter the value for rotation (in deg.). You will get the proper results in the coding window.

The example below should work for FS2K:

[image: image1.png]
The Light beam is moved 1 unit to west (positive x value) and liftet 24 units. The beam basicly points north and is rotated for 270 deg. The object is not scaled.

Once again: If you are using this for CFS 2 you could scale the beam with the 3 values in the scale matrix.

If there is no command shown in the ComboBox you may call a Light command by using the “Select color for Light” button. It writes the command automatically. The settings in the Light command work fine and are the result of Martin’s experiments. To play with the settings read Manfred’s explanation:

Light(vattr type ox oz oy

 intens liat sqat a r g b

 direction

)
 - 2.43 FS2K

 vattr vector attributes

 the only allowed values are:

 m this tells SCASM that the vector

 data are in component form (x z y)

 p this tells SCASM that the vector

 data are in polar coordinates and

 needs to be converted to FS format.

 type type of light

 0 beacon

 1 ?

 2 ?

 3 taxi light

 4 nav light

 5 landing light

 6 strobe

 ox offset values, usually 0.0

 oz

 oy

 intens intensity, typical values are 20, 40

 liat linear attenuation factor (normaly 0.6)

 sqat squared attenuation factor (normaly 0.4)

 argb color

 typical values:

 FF 255 255 255

 F5 255 255 255

 FF 255 0 0

 00 255 255 0

 direction

 Light direction vector.

 FS uses vector data in normalised

 component form giving a vector with the

 length of 1. For this reason non of the

 3 vector components can be larger than 1.

 If vattr = m the direction vector is

 expected in x-z-y component form

 (-0.1715 0.1585 -0.9724).

 For humans it is easier to express the

 direction vector in polar coordinates

 which is elevation angle (positive = up)

 and heading angle. This data is expected

 if the p flag is set.

You may save your command to the local list of the ComboBox or save it to the drive so it will appear in the ComboBox list after restarting the program.

The “Open fields” command enables all fields in the scaling matrix. This my help to play around with the Trnsform_Mat.

The following text shows the result of Martin’s experiments with the command:

Transform Matrices

This is what I have been able to work out by working through

my "Teach Yourself DirectX in 24 hours" book...........

The 'z' and 'y' may actually be the other way round. DirectX

has a slightly different view of which axis is which

Translate (move to x,z,y)

x z y

1 0 0

0 1 0

0 0 1

Scale

0 0 0

Sx 0 0

0 Sz 0

0 0 Sy

Rotate on X axis

0 0 0

1 0 0

0 cos sin

0 -sin cos

Rotate on Z axis

0 0 0

cos 0 -sin

0 1 0

sin 0 cos

Rotate on Y axis

0 0 0

cos sin 0

-sin cos 0

0 0 1

You can do multiple transformations using a single matrix by multiplying

together the individual matrices for each transform. I haven`t quite got

the hang of it yet but I have done.....

Move 10m E and 10m S Rotate on X axis and scale the z by 5x

10 0 10

1 0 0

0 5.0*cos sin

0 -sin cos

But I get a headache......

This is a short text about Ralf’s experiments with the commnd under CFS 2:

Some examples / experiments for the Transform_Mat

Have in mind that it COULD be different in FS2K! This is tested for CFS2

Basicly the beam points to north. The "move" values mean that the whole beam is moved from the Refpoint!

In the first example 50 units over the ground (the z axis). This is useful if you have lamp and want to

call the beam inside the object (for moving the whole thing). Imagine: a lamp that is swinging in the wind...

ROTFL...

Here we go:

1. ---

CFS2: Beam straight down! This is a rotation on the x - axis!

 Beam scaled on x axis to 5 (thicker)

 whole beam moved 50 units up

; Start of Transform_Mat

Transform_Mat(0 50 0 ; move to x, z, y

 5 0 0

 0 cos[90] sin[90]

 0 -sin[90] cos[90]

)

Light(p 5 0 0 0 60 0.1 0.001 F8 0 255 64 0 0)

TransformEnd ; End of Transform_Mat

2. --

CFS2: The leading 1 doesn't seem to make any difference here

; Start of Transform_Mat

Transform_Mat(0 50 0 ; move to x, z, y

 5 0 0

 0 1*cos[90] sin[90]

 0 -sin[90] 1*cos[90]

)

Light(p 5 0 0 0 60 0.1 0.001 F8 0 255 64 0 0)

TransformEnd ; End of Transform_Mat

3. --

Now let's try this:

; Start of Transform_Mat

Transform_Mat(0 50 0 ; move to x, z, y

 5 0 0

 0 1*cos[90] 10*sin[90]

 0 10*-sin[90] 1*cos[90]

)

Light(p 5 0 0 0 60 0.1 0.001 F8 0 255 64 0 0)

TransformEnd ; End of Transform_Mat

The -sin and the sin are scaled (???) by multiplying it by 10. It would NOT work

if you would only multiply 10 to ONE of the two parameters.

The beam's beginning (x,z,y) is STILL in the same place but the beam is smaller and

much longer now.

4. --

Ok, let's look what happens if we delete the rotation:

; Start of Transform_Mat

Transform_Mat(0 50 0 ; move to x, z, y

 5 0 0

 0 1 10

 0 10 0

)

Light(p 5 0 0 0 60 0.1 0.001 F8 255 128 192 0 0)

TransformEnd ; End of Transform_Mat

The result is, that the beam is NOT pointing north (as expected after removing the rotation) it is pointing upwards.

And it is scaled in the same way as in the example above.

The direction is the same as if we would rotate it on the x axis for 270.

But we should be not sure because we can't decide a rotation around the x axis from one around the y axis!

The beam is round!

5. --

Ok, let's do a step back to the basics:

; Start of Transform_Mat

Transform_Mat(0 50 0 ; move to x, z, y

 1 0 0

 0 1 0

 0 0 100

)

Light(p 5 0 0 0 60 0.1 0.001 F8 255 128 192 0 0)

TransformEnd ; End of Transform_Mat

This scales the y axis a 100 times. Simple, isn't it? No!

If we scale a "normal" object a hundred times we expect that it would be scaled around the RefPoint.

In this case the beam was scaled +100 what means it is running up north.

Ahhhh! Should be easy to verify this by changing the 100 to -100, and voila...

6. --

Now let's create a beam we could work with:

; Start of Transform_Mat

Transform_Mat(0 50 0 ; move to x, z, y

 100 0 0

 0 1 0

 0 0 10

)

Light(p 5 0 0 0 60 0.1 0.001 F8 255 128 192 0 0)

TransformEnd ; End of Transform_Mat

This one has a scaling on the x axis of 100 and 10 on y. If our theory from example 5. is right we would

have a rectangular beam that is stretching 100 units right from the RefPoint. Wrong!

Watch the beam that is created. It has a scale on the y axis of 10. But the beam is trapezoid.

It seems as if the TransForm_Mat (or the Light command) computes something different.

But let's work on to get a beam where we could identify what happens:

; Start of Transform_Mat

Transform_Mat(0 50 0 ; move to x, z, y

 100 0 0

 0 50 0

 0 0 10

)

Light(p 5 0 0 0 60 0.1 0.001 F8 255 128 192 0 0)

TransformEnd ; End of Transform_Mat

Our beam is now still trapezoid in the x / y plane and has a height of 50 units.

7. --

; Start of Transform_Mat

Transform_Mat(0 50 0 ; move to x, z, y

 100 0 0

 0 50 20

 0 0 10

)

Light(p 5 0 0 0 60 0.1 0.001 F8 255 128 192 0 0)

TransformEnd ; End of Transform_Mat

Above we have changed another value (20) on the y plane of our matrix. Now have a look to our cone from

the side. The "plate" near the RefPoint where the light comes out is sloped downwards! The same happens

if we change two other values in our matrix. So we get the following:

0 0 0

0 0 X <- single value (+ / -) to turn the x axis in the RefPoint + = "sloped downwards" - = "sloped upwards"

0 0 0

0 0 X <- single value (+ / -) to turn the z axis in the RefPoint + = "sloped right" - = "sloped left"

0 0 0

0 0 0

0 X 0 <- single value (+ / -) to turn the y axis

0 0 0

0 0 0

Note: You will only see this effect on the y axis if your lightbeam is elipsoid!

The following values seem to influence the direction of the beam:

0 0 0

X 0 0

X X 0

For example:

Transform_Mat(0 50 0 ; move to x, z, y

 100 0 0

 -10 50 0

 -10 -10 10

)

Light(p 5 0 0 0 60 0.1 0.001 F8 255 128 192 0 0)

TransformEnd ; End of Transform_Mat

This gives a beam that is going left downwards from the RefPoint.

If you are using this "single" values the beam is more "sharp".

This would explain why you have to use the following values for a beam that goes downwards:

0 0 0

0 x x <-

0 x x

The x on position 6 (<-) turns the plate where the beam comes out. The other three values have to be

computed to "steer" the direction of the beam to a point which is UNDER the RefPoint.

Simple said but I have no better explanation.

If you want to scale or change other things youll need to use the function I hve build into the editor.

A scaling of the z axis WHILE the beam has to go down is done by 20*cos[90] at position 5

0 0 0

0 20*cos[90] 0

0 0 0

Following Martins theory it could be done in two matrices like:

0 0 0

0 20 0

0 0 0

0 0 0

0 cos[90] 0

0 0 0

(Both called by a TransForm_Mat , the command , and two TransForm_Ends after)

What means that I have tried to implement multi matrices into one in the editor.

But I will overwork it again, because I'm not really sure if it fits the useful cases

for object designing. Btw.: Is there any other command to be used in a TransformMat?

I have to stop here, getting a headache ..

__

