How to generate and use object Libs with SCASM 2.50

Important! Please read this document carefully because there are some significant changes in the instruction format from version 2.22 to 2.32. There is a table of the changes at the end of this document.

There are also some changes in the handling of the object ID number in SCASM 2.36.

About BGL libraries

Library objects are defined in the Object Library Section of BGL files. This section is traditionally called section 10 by 3rd party scenery developers. Library objects are very memory efficient if you need to display a number of equal objects at the same time in your scenery. The disadvantage is that it is not easy to modify them.

BGL libraries appeared first in FS98 for the dynamic objects. Later we found lib objects also in CFS. CFS uses library objects also for often used aircraft parts such as propellers and bombs. Unfortunately the binary format of the FS98 and CFS/FS2K libs are not compatible.

If you have found out some interesting facts which are not mentioned in this document, please don't hesitate to send a small message to me (plain ASCII text).

Please note that SCLINK cannot handle object library data. If needed I will create an LibManager for this job. If you want to see a list of the names in an CFS/FS2K lib please use my CatGen program. (Most FS2K libs needs to be uncompressed by BGLZIP from MS)

Howto start

If you do not only want to use objects from one of FS/CFS standard libraries, you have to create your own lib. It is recommended not to mix library object definitions with other BGL sections (use different source files for lib objects and your scenery). You also should not mix FS98 style objects and CFS/FS2K objects in the same library.

The new commands are as follows:

ObjID(id0 id1 id2 id3)

LibID(id0 id1 id2 id3) - osolete

 -

 id0 object ID least significant value (hex)

 id1 ...

 id2 ...

 id3 object ID most significant value (hex)

 -

 This command defines an 128 bit object ID, split

 up into four 32 bit hex numbers. In FS every

 library object is identifyed by his ID.

 You can chose any value you want for the ID numbers

 but you have to be sure that no other library

 object in any library BGL file uses the same value.

 This command is used to define the ID for the next

 (following) LibObj() command. You do not need to,

 but you can, repeat ObjID() for every object in

 your library since SCASM automatically increments

 the id0 value. This means that SCASM automatically

 generates consecutive ID numbers by default.

 Older SCASM versions increments the id3 value to

 generate a new ID. If you want this feature back

 (for FS98 compatibility reasons only!) add the

 following line at the beginning of your library

 source file:

 Set(OBJID 0)

LibObj(<list of parameters>)

 - 2.43 CFS/FS2K

 This command defines the beginning of an CFS / FS2K

 library object code and the library entry.

 Library objects are called as subroutines. So do

 not forget the Return command, besides the EndObj,

 at the end of your object definition.

 The parameters are identified by name.

 You can omit unused parameters.

 For every used parameter enter its name and its

 value separated by spaces. SCASM recognises this

 new LibObj parameter format by the parameter name.

 If the first character in the parameter list is a

 number the old format is asumed.

 Every library object is identified by an unique ID

 number. You first have to set this number with the

 ObjID() command.

 -

 PWR <int_value>

 number 0 to 255, normally 0 or 100

 SIZE <radius>

 the size of this object in meters (int)

 SCALE <scalefactor>

 scalefactor of this object

 Found values are 1.0, 0.5, 0.1, 0.001

 TYPE <int_value>

 Object type, purpose unknown

 typical values are:

 0x101, 0x102,

 0x201, 0x203, 0x204

 0x301, 0x401, 0x501

 PROP	<property_value>

 purpose unknown

 according to new FS98 SDK currently unused

 NAME "object name"

 Up to 45 characters to name this object.

 Use " if string includes spaces.

 This parameter is mandatory and must

 always be the last one in the parameter list.

 -

 For FS2K dynamic objects use

 PWR 100, SCALE 1024, TYPE 2

 For FS2K vehicles use

 PWR 0, SCALE 0.1 TYPE 0x400

LibObj(pwr x1 x2 x3 x4 x5 x6 x7 x8 "Name of this Object")

 - obsolete, continued for compatibility CFS/FS2K

 This is the command for defining an object for a CFS

 object library (extended version).

 Library objects are called as subroutines. So do

 not forget the Return command, besides the EndObj,

 at the end of your object definition.

 -

 pwr number 0 to 255, normally 0 or 100

 x# 16 bit hex values, purpose unknown

 format and amount may be changed tue to

 hopefully better knowledge in the future.

 Name up to 32 characters to name this object.

 Use " if string includes spaces.

 Note: SCASM will generate an error message if you try

 to mix LibObj() and LibObj1() in one source code,

 but it should always generate the correct object

 type. It is not tested if any version of FS can

 handle "mixed object format files" and their related

 library call commands.

 Found values for x parameters in CFS libraries:

 x1 0, many values around 20 .. 30, one 1388

 it seems this is the object diameter

 x2 always 0

 x3 0

 x4 0, many A, few 1, 2, two 3E8 (related to MDL

 objects)

 x5 101, 102, 201, 202, 203, 204, 301, 401, 401, 501

 x6 0

 x7 0

 x8 0

 For FS2K dynamic objects use pwr = 100,

 x3 = 40, x5 = 2 (others 0).

 FS2K vehicles: x1 = object radius?, x4 = A or 1,

 x5 = 400

LibObj1(a b c d pwr)

 - FS98 only

 a, b, c, d ID values (32 bit hex)

 purpose unknown, not tested

 use numbers "1 2 3 4" for this.

 pwr This value is named power in the SDK

 maybe this value has somthing to do

 with the range of the object

 visibility. Allowed range

 is 1 to 255 (mostly found 100)

 -

 This instruction defines the beginning of an FS98

 library object (similar to the Area() command in

 the visual object section). Normal BGL instructions

 are used to define this object. Since this object

 is called as a BGL subroutine the exit from this

 routine must be via a Return command.

EndObj

 -

 This command indicates to SCASM that an lib object

 ends here. An FS98 library object cannot exceed

 64 KB because of the FS internal header format.

 An FS2K/CFS library object code can be larger

 than 64kB (LibObj()).

 This command also increments the internal object

 ID counter so the following LibObj() is created

 automatically with the next available object ID.

 If you don't want to use this ID you are free to

 set a new one by a new ObjID() command.

LibCat("catalogue_file_name")

 - new in SCASM 2.32

 Pseudocommand (this command does not generate BGL

 data)

 Since it is not easy for humans to identify the lib

 objects by their 128 bit ID number SCASM now offers

 to use their description text. This is _exactly_ the

 same text as used in the LibObj(...) command.

 SCASM uses a catalogue file to convert the

 description to the ID sring.

 To use this option you first have to build the

 catalogue (-> see my CatGen program for details)

 and then tell SCASM by this command to load it.

 This command only works with CFS/FS2K style

 libraries because the FS98 ones do not have a

 text description.

CallLibObj(x id0 id1 id2 id3)

CallLibObj(x "library object description") alt. format

 - CFS/FS2K

 This is the new library object call for CFS/FS2K.

 Only use this command for CFS/FS2K sceneries. It

 is not compatible with the FS98 version!

 (both use opcode 0x63 but have different length)

 The alternate format can only be used if you have

 loaded a library catalogue with the LibCat()

 instruction (see above).

 To activate an dynamic object from the dynamic

 scenery section please use the CallDLibObj(...)

 which replaces the old D_35() command.

 -

 x reserved, set it to 0 !

 id0 ID numbers of the wanted object (32 bit hex)

 id1

 id2

 id3

CallLibObj1(id0 id1 id2 id3)

 - FS98 only

 id0 ID numbers of the wanted object (32 bit hex)

 id1

 id2

 id3

 -

 This instruction is used in the visual section to

 display an object from the library.

 To activate an dynamic object from the dynamic

 scenery section please use the CallDLibObj(...)

 which replaces the old D_35() command.

Example for an static FS98 lib object file:

 Header(1 80 -80 -179 180)

 Set(ObjID 0) ; for FS98 backward

 ; compatibility

 ObjId('tseT' 'biL ' 1 0)

 ; same as: 74736554 , 62694C20

 LibObj1(1 2 3 4 100) ; the first lib object in

 ; the file

 ;

 :points

 Points(0 ...)

 SurfaceColor(4 F0)

 Bitmap(scahs05.r8 0 0 0 0)

 POverride

 TexPoly(a ...)

 ...

 Return ; important!

 EndObj

 ;

 ; more objects may follow

How to use an FS98 lib object from a scenery file:

 This calling sequence is for an shadowed object.

 ...

 PerspectiveCall(:house1)

 LayerCall(:shadow 60)

 Jump(:End)

 ;

 :shadow

 ShadowCall(:house2)

 Return

 ;

 :house1

 Perspective

 :house2

 RefPoint(rel :house_end 0.125 LAT LON ...)

 RotatedCall(:the_house 0 0 -90)

 :house_end

 Return

 ;

 :the_house

 CallLibObj1(74736554 62694C20 1 0)

 ; this calls the first lib object with index 0.

 ; If your lib has more objects you can increment

 ; the ID3 value accordingly.

 ;

 Return

 ;

 :End

 ...

How to use an CFS /(FS2K) library object:

 -

 a typical calling sequence for an 3D object is:

 Area(A 48:21:59 10:52:05 100)

 CrashIndirect(:OBJ :SHD :ROT 0 0)

 ShadowCall(:SHD)

 PerspectiveCall(:PERSP)

 Jump(:)

 ;

 :PERSP

 Perspective

 :SHD

 RefPoint(rel :END1 0.5 48:21 10:52 V2= 10)

 :ROT

 RotatedCall(:OBJ 0.00 0.00 64.00)

 :END1

 Return

 ;

 :OBJ

 CallLibObj(0 9797FC57 8A930060 11D14AC5 A028DC02)

 ; these 'cryptic' numbers identify the library

 ; and the wanted object in it

 ;

 Return

 ;

 EndA

 This is a typical calling sequence for an

 CFS flat object:

 Area(A 52:07:35 05:53:52 100)

 LayerCall(:Obj1 24)

 Jump(:End)

 ;

 :Obj1

 Perspective

 RefPoint(rel :End1 1 52:07 05:53 V2= 1200)

 RotatedCall(:The_Obj 0.00 0.00 -167.02)

 :End1

 Return

 ;

 :The_Obj

 CallLibObj(0 9797FC57 8A930060 11D14AC5 A028DC9A)

 Return

 ;

 :End

 EndA

 A normal CFS 3D Object should start with the

 following code:

 ...

 CrashStart(:all_ok 50)

 CrashBox

 (:no_crash 0 20 0 40 40 40 0 0 0)

 SetCrashCode(14)

 :no_crash

 Return

 ;

 :all_ok

 Points(0 ...

 ; the normal object code follows here...

 ...

How to define an FS2K dynamic library object?

This is an often found startup sequence:

 Header(1 80 -80 -179 180)

 ObjId(00C2CDA9 A9E100AA 596711D0 B1A18305)

 LibObj(PWR 100 SCALE 1024 TYPE 2

 "FS2K dynamic aircraft")

 ShadowPosInd(0)

 SuperScale(:L014 2048 15000 6)

 ShadowCallVI(:L038 18)

 :L014

 RefPoint(nsi :L036 0)

 SuperScale(:L036 2048 15000 6)

 PBHCall(:L038 18)

 SetVar(2C 25)

 :L036

 Return

 :L038

 ...

 :L044

 IfHSize(:L288 64 2)

 Points(0 ...)

 LoadSurfaceColor(32)

 ConcavePoly

 Poly(...)

 ...

 Return

 ...

 EndObj

Note: The local variables in dynamic objects seem to be the same in FS98 and FS2K. Variable 18 points to a data set containing pitch, bank and heading. Variables 30 to 28 are containing color codes. The scale factor in the object header looks very weired compared to others. Maybe it is interpreted in a different way by FS.

How to use an FS2K dynamic library object:

 Header(1 45:00:00 37:44:32 -85:00:00 -91:24:23)

 LatRange(40:59:58 42:59:56)

 Area15(42:59:56 40:59:58 -87:00:03 -89:00:01

 44:22:52 38:14:06 -85:37:39 -90:22:25

)

 LatRef(41:55:00)

 Pattern(:L21B FFFFFE0 3 0)

 ...

 :L08A

 CallDLibObj(:L933 3 0

 00C2CDA9 A9E100AA 596711D0 B1A18305)

 ...

 Exit

 ...

 End15

--

Changes fron version 2.22 to 2.32 and later:

 2.22 2.32 and later

 LibObj(...) -> LibObj1(...) renamed

 LibObj2(...) -> LibObj(...) renamed

 CallLibObj(...) -> CallLibObj1(...) renamed

 CallLibObj2(...) -> CallLibObj(...) renamed &

 1 new parameter

 CallDLibObj(...) -> CallDLibObj(...) mainly unchanged

 LibID(...) -> LibID(...) unchanged

 LibID(...) -> ObjID(...) new name added

 -> LibCat(...) new

Aditional informations:

Dynamic object parameter block

There is one object parameter block for every dynamic object. The entries in this parameter block are "visible" from an dynamic library object as a local variable with the following values. It may usefull to know these values if you create your own dynamic objects.

 0 object position, Lat Lon Alt

 18 objects pitch, bank and heading data

 24 object flags, see below

 26 mirror of beacon counter

 often masked with hex values of 0x404 or 0x808

 28 slow moving prop position, 16 bit pseudodegrees

 (rotating angle)

 2A fast prop position

 2C object radius in meters

 2E textured aircraft flag

 30 object color 0

 32 object color 1

 34 object color 2

 36 object color 3

 38 object color 4

 3A object color 5

 3C object color 6

 3E object color 7

 flags:

 0x0001 anti collision stopping disabled

 0x0002 unused

 0x0004 gear bit

 0x0008 unused

 0x0010 day

 0x0020 dawn / dusk

 0x0040 night

 0x0080 unused

 0x0F00 mask for density bits (0...4 valid)

 0x1000 object is considered "other traffic"

 0x2000 object is considered "service traffic"

 0x4000 object is considered "ground aircraft

 traffic"

 0x8000 object is considered "airborne aircraft

 traffic"

--

