SCASM command reference 2

2.85

This document contains instructions for building the visual scenery. Traditionally these are called section 9 commands.

All visual scenery commands are grouped into Area() blocks or LibObj() blocks (-> OBJLIBS.DOC).

No other commands are allowed in such blocks except pseudo commands as Mif, Uvar, Macro ...

Area(type Lat Lon Rng)

 -

 This marks the begin of an block of visual scenery

 commands.

 type 5, 8, B, A, E

 This is simply the first byte of the

 generated hex code.

 The visibility ranges are different for each

 type. I do not know the absolute limits.

 I have different values from different

 sources for them.

 5 0 ... 22 km (0 ... 40 km)

 8 40 ... 130 km

 (invisible 0 ... 40 km)

 B 0 ... 255 km (0 ... 130 km)

 A Used mainly for calling lib objects

 in CFS sceneries. It can only contain

 255 bytes of BGL data.

 E This area type seem to be a very special

 one. It is used to define a library of

 bitmaped tiles in CFS. This type can

 contain more than 64kb of data and has

 a very large visibility range. The

 disadvantage is that FS2K accepts

 only one Area(E ..) type per active

 scenery.

 In FS2K there are some new Area types

 available. The purpose of these types

 is unknown.

 4 maximum code length 246 bytes

 7 maximum code length 245 bytes

 6 no size limit

 You can use several of these types in

 one scenery.

 9 no size limit

 C no size limit

 I obseved the range can be influenced by the

 scaling factor and the V# parameters of the

 RefPoint() command.

 Lat/Lon location of this area

 Rng range in km units (integer). It seems this

 value controls how long this area needs to

 be hold in the scenery buffer. This does not

 automatically mean that the objects in this

 Area() are displayed, since the visibility

 is also controled by the V# parameters in

 the reference points (within this Rng limit).

 Since it is told FS5.1 can only hold about

 256 k bytes of scenery, you should not use

 unrealistic large values to avoid wasting

 memory.

 Note! In FS5 a single scenery area is limited to

 16kB. SCASM 1.6g/1.67 (and above) is testing this

 limit and will produce an error message, but the

 scenery is compiled correctly up to about 24..32 Kb

 (depending on the current buffer status).

 FS98 is able to handle larger objects. Use SCASM's

 SET() command to enable larger object compilation.

 It is reported that FS2K does not show the maximum

 visibility range.

EndA

 End_of_Area

 This marks the end of an Area block. No code is

 generated. You can see this command as a special

 jump destination. All unresolved Jump()s and all

 'empty' labels (-> only ':') are directed to this

 location.

 This command also causes some internal actions such

 as patching all label references and writing buffers

 to disk.

LibObj(<list of parameters>)

 - 2.43 CFS/FS2K

 See OBJLIBS.DOC for more information.

EndObj

 - 2.43 CFS/FS2K

 See OBJLIBS.DOC for more information.

Area(R)

 -

 This is an option to produce a raw BGL output of

 visual scenery objects, which is usefull if you

 want to process the compiled BGL code with other

 programms.

 To enable the RAW output you also have to set the

 RAW flag by inserting the line "Set(RAW 1)" to your

 source text. This suppresses the output of the

 normal BGL file header. The -raw command line switch

 is not longer needed (2.47 and later). If you get

 an buffer overflow you have also to increase the

 working buffer by using Set(BUF ###).

 No Header() and LatRange() commands are needed for

 an RAW-output source file.

 The RAW output file cannot be used directly in FS

 and also SCLINK cannot handle it.

 The output file starts with a long integer number

 (4 bytes) which indicates how many valid bytes of

 BGL data will follow.

 SCASM can only compile one "raw" object per compile

 run. A typical source file for raw output will look

 like:

 Set(RAW 1)

 Set(BUF 200) ; for 200KB buffer size

 Area(R)

 ...

 ... ; your BGL instructions

 ...

 EndA

RefPoint(type :Label scale Lat Lon [...])

 -

 This command defines a reference point for further

 actions. All distances entered now are relative to

 this point. If FS5 decides the viewer is too far

 away, a jump to :Label is performed and the following

 commands are not executed. For the Refpoint type

 selector I simply chose the first digit of the

 generated hex code.

 The optional v1= and v2= parameters may help the

 drawing systen to speed up things in dense sceneries.

 They are used to control the visibility of objects.

 -

 type type of the RefPoint. There are different

 types of RefPoints as follows:

 2 or

 abs absolute referencepoint, MSL (main

 sea level) This type is used if an

 absolute elevation setting is needed.

 The elevation is set with the "E="

 parameter. The scenery object is

 put on this level, regardless what

 the altitude definition in the

 coresponding synth tile says.

 7 or

 rel relative referencepoint, always 0 AGL

 The altitude is adjusted to the same

 level as defined in the Synth Tile

 block you are standing on. The "E="

 parameter is ignored.

 3 or

 ns Reference point with NO SCALE

 setting. This type is often used for

 very detailed complex static

 objects.

 The altitude setting for this

 referencepoint type is always

 absolute (=MSL).

 For setting the scale factor use the

 -> SuperScale() / SetScaleX()

 command.

 :Label symbolic name of a jump destination

 scale scale factor, if scale = 1 all distances are

 in meters. Floating point values accepted.

 This parameter is not allowed for type "ns".

 Lat/Lon Position

 These optional parameters are prefixed by an

 identifier

 E= ### elevation of this point in meters (MSL),

 not for type 7/rel. Always required for type

 "abs" and "ns".

 v1= ## visibility range of this object in meters

 (int)

 v2= ## radius of this object in design units (int).

 This is in meters if scale factor is 1.

 Note: according to the FS2K scenery SDK v1 (range)

 and v2 (size) should not left blanc because this

 will result in a slow running scenery.

RefPoint(nsi :Label varptr [...])

 -

 Referencepoint with no scale and with indirect

 position via varptr. (v1= ## v2= ## optional)

 For scaling use SuperScale(). Used for moving

 objects.

RefPoint(ind :Label scale var [...])

 -

 This reference point is used in the aircraft model

 files and uses an indirect position definition.

 -

 ind the keyword "ind" indicates that indirect

 positioning is used.

 var the address of the variable area that holds

 the current position (Lat, Lon, Alt).

 [...] v1= ##, v2= ##, optional

ShadowPos(Lat Lon ALt)

 -

 This command sets the position for a shadow of an

 static object which is not on the ground like the

 blimp in thc Chicago scenery.

 ShadowPos(...)

 SuperScale(...)

 ShadowCall(...)

ShadowPosInd(var)

 -

 (SHADOWVPOSITION in FS98SDK)

 This command sets the shadow position of an non

 static object like an aircraft. Since the position is

 variable in this case it is addressed indirect by

 a pointer to an array of variables.

 Used in .MDL files and dynamic object libraries.

SetScale(:Label V1 V2 scale)

ReScale(:Label V1 V2 scale) -> FS98 SDK

 -

 This command sets/changes the scale factor for normal

 reference points (abs, rel).

 If the visual range test parameters are used, a range

 test is done.

 -

 V1, V2 visual range test parameters (used if not 0).

 Same as in the reference points.

 :Label jump to this label if range test is negative.

 scale scale factor (decimal, floating point value)

SuperScale(:Label v1 v2 sx) -> FS98 SDK

SetScaleX(:Label V1 V2 SX)

 -

 Sets a sort of binary scale factor for reference

 points types ns and ShadowPos() .

 -

 V1, V2 visual range test parameters (used if not 0).

 Same as in the reference points.

 :Label jump to this label if range test is negative.

 SX This is actualy the exponent of the scale

 factor (integer).

 True scale factor is calculated as follows:

 scale = (2^SX) / 65536

 example:

 scale = (2^16) / 65536 = 1

 As a result the scale factor can only be set

 to a value which can be expressed as a power

 of 2 (devided by 65536).

 Another way to calculate scale is:

 scale = 1 / 2^(16-sx)

 with sx = 7 this results in:

 scale = 1 / 2^(16-7)

 = 1 / 2^9

 = 1 / 512

 Normally only values up to 31 are allowed

 Values of 32 and obove are interpreted

 as a local variable which carry the scaling

 information in the normal fractional formal.

 Maybe this sort of scaling speeds up the internal

 calculations because the scaling can now be done

 by bit shifting. Do not confuse with 2*10^sx .

 Note: Some users reported problems with this

 instruction when used in library objects, such as

 static aircrafts, converted from MDL files.

Points(firstnum x1 z1 y1 ... xn zn yn)

 -

 This command builds a table of 3D points. Normaly

 firstnum should be set to 0. Other values are used

 to change or expand an existing list. The number of

 points per area block is limited to 400 (200 in older

 versions, 800 in a 32-bit vers.).

Points(g firstnum

 Lat_1 Lon_1 Alt_1 ... Lat_n Lon_n Alt_n)

 - 2.51

 This is an alternate format of the Points()

 command which lets you enter the points in a

 geographic Lat/Lon/Alt format.

 This command only works if SCASM already has

 processed a valid reference point with a scale

 factor. The altitude is expected in meters.

 ...

 Points(g 1

 60:00:1.5 -2:0:3 0

 59:59:59 -2:0:3 0

 59:59:59 -2:0:1 0

 60:00:1 -2:0:1 0

)

 ...

DefPoint(index x z y)

 -

 Defines a single point in the list of points. Note,

 points defined with this istruction cannot be used

 with SCASM's automatic vector calculation feature

 unless this command is only used for updates.

 -

 index the index number of this point

VecPoints(m firstnum x1 z1 y1 vx1 vz1 vy1 ...

 xn zn yn vxn vzn vyn)

VecPoints(p firstnum x1 z1 y1 el1 hd1 ...

 xn zn yn eln hdn)

VecPoints(vattr firstnum x1 z1 y1 ... xn zn yn)

 -

 This command builds a table of vector points. The

 vectors are used for color shading with

 -> ShadedPoly(). If you have unregular shaped objects

 it may be better to calculate the vectors manually.

 In automatic mode the number of points are limited

 to 400 in this version. The automatic function gives

 the vector the direction from the RefPoint TO this

 point, but remember this is correct only for regular

 shaped objects. It is possible to suppress ONE vector

 component by using xy xz yz vattr. Other values may

 confuse the assembler. For example you may use

 "xy"-flags for a cylindric gas tank.

 -

 x# z# y# coordinates of a point (integer)

 vx# vz# vy# components of a vector

 firstnum number of first point (usually 0).

 vattr vector calculation attributes, see

 above. (a, xy, xz, yz, p)

 el# elevation angle in degrees

 (-90° .. +90°)

 hd# heading angle

AutoPoints(firstnum numcount dx1 dz1 dy1 dx2 dz2 dy2)

 -

 This command draws nothing. It only calculates and

 fills a table of points. Numcount points are

 generated, where firstnum is the first one. You can

 think of this being a command to calculate the

 coordinates for a dotted line from P1 to P2 and than

 fills the point list.

 Note: In original FS5 sceneries this command was

 not found with a Numcount value higher than 7.

 Points defined with this command cannot be used with

 SCASM's automatic vector calculation feature!

MoveToPt(#)

 -

 Moves the drawing cursor to the 3D-coordinates given

 by the point #(number) of a list of 3D points which

 is previously defined by the Point() command.

 For lines and surfaces.

 -> Points(), ->VecPoints(), -> StartSurface,

 -> EndSurface, -> DrawToPt(), ConcavePoly

DrawToPt(# [#...#])

 -

 A drawing command from the previous point to this

 point# is executed. The points has to be defined in

 an 3D point list.

 This command is repeated for every # in the brackets.

StartSurface

 - FS5 - FS98

 not for FS2K

 If this command is entered, you can use the above

 commands to define a surface (covered with color or

 bitmap).

 -> EndSurface, -> SurfaceColor(), -> ConcavePoly,

 -> Bitmap()

EndSurface

 - FS5 - FS98

 not for FS2K

 This indicates the end of an surface drawn with the

 MoveToPT() and DrawToPt() commands.

MoveTo(x z y)

 -

 This command moves the drawing cursor to the 3D point

 which is defined by the given coordinates.

 For lines only. Do not mix the MoveTo()/DrawTo() type

 of instructions with the MoveToPt()/DrawToPt()

 instructions and also do not use it for 'shadowed'

 objects.

 -> LineColor(), -> Brightness(), -> DrawTo()

DrawTo(x z y)

 -

 A drawing command from the previous point to this

 point is executed. For lines only.

 -> LineColor(), -> Brightness(), -> MoveTo()

LineColor(num attr)

 -

 Sets the color for lines and dotted lines and single

 dots.

ShadedColor(num attr)

 -

 The color for shaded polygons is set. It seems this

 command also sets the surface color.

SurfaceColor(num attr)

 -

 num color code (hex)

 attr color attributes

 F0 normal colors, changes with time of

 day

 68 transparent colors

 69 direct palette color

 -

 Sets the color for normal polygons and surfaces

 defined with

 -> StartSurface - Move..() - Draw..() - Endsurface or

 -> Poly()

LoadSurfaceColor(FSvar)

 -

 The surface color code is loaded from a local

 variable.

LoadShadedColor(FSvar)

 -

 The shaded color code is loaded from a local

 variable.

LoadLineColor(FSvar)

 -

 The line color code is loaded from a local variable.

Bitmap(name.ext x dx dz dy)

 - FS5 - FS2K

 Load a bitmap (texture) file from the active TEXTURE

 directory.

 in FS5.0 and FS5.0a this is usually:

 C:\FLTSIM5\TEXTURE

 in FS5.1 this is could be:

 C:\FLTSIM5\TEXTURE general/global

 texture

 directory

 OR

 C:\FLTSIM5\MY_SCEN\TEXTURE the local

 active scenery

 texture

 directory

 -

 Bitmap files often have extensions '.R8' but there

 are also bitmaps with other extensions. I think the

 '.R8' extension should be reserved for the "global"

 textures which are stored in the genaral texture

 directory. Therefore I recommend to use your own

 extension if your texture is not supposed to be

 shared with other sceneries. However, some authors

 and users prefer to use always the .R8 extension for

 easier recognition of texture files. Therefore it is

 important to mention these extensions in your scenery

 documents.

 -

 name.ext The name of the bitmap file. You

 cannot specify any drive or path name

 in this instruction

 (limit in BGL file format).

 dx x offset in RefPoint units

 dy y offset

 dz z offset, normaly 0

 x unknown (decimal).

 Often found values: 0, 1, 8

 Note:

 The bitmaps for FS5 are a simple 256 x 256 pixel

 (/texel) arrays using 1 byte per pixel. Note the

 following x, y pixel adress:

 top left 0 0

 top right 255 0

 bottom left 0 255

 bottom right 255 255

 For some reasons bitmaps drawn with

 Bitmap() - StartSurface - MovetoPt() - ... -

 Endsurface

 are drawn top down !

 The standard color palette is stored in FS5.PAL (in

 FLTSIM5\TEXTURE dir). You cannot view/edit these

 bitmaps with normal drawing programms but there are

 several "R8" editors available in the webb.

RepeatBitmap(dx dz dy)

 - FS5 - FS2K

 Repeat/reactivate a still loaded bitmap. Parameters

 are the same as in Bitmap().

BitmapMode(first_color)

 -

 preliminary, name may be changed in next versions

 (Bitmap copy mode)

 It seems this command controls the handling of the

 pixels in a bitmap. This command sets the first color

 index number which is copied ito your scenery.

 Use this instruction only with TexPoly().

 -

 first_color Decimal value 0 .. 255. This is the

 first color number to be copied.

 Do not forget to change back to 0

 (normal). All colors from 0 to this

 value appearing to be transparent.

 Note: It is reported to me that this command causes

 problems if used with the new LoadBitmap() command.

 So use it only with the old FS5 Bitmap() command.

RGBSColor(a r g b)

RGBLColor(a r g b)

LoadBitmap(x type a r g b name_of_a_BMP_file)

 -

 See SCACMD3.DOC

Inst_81(state) ; old, not longer supported

AntiAlias(state) -> FS98 SDK

Smoothing(state)

 - FS5 - FS2K

 This instruction is found very often just following

 the Bitmap() instruction. It seems this instruction

 controls the image smoothing for ground textures. It

 comes into effect when the option image smoothing is

 set in the preferences display option menu.

 -> TexWindow(), -> ShadedTexPoly()

 -

 state 0 off

 1 on

MipMap(state) -> FS98

 -

 state 0 off

 1 on

 -

 This instruction switches mipmapping on/off.

 This command is mentioned in the FS98 SDK but

 doesn't seem to work as expected.

Transparency(mode) 2.11 / FS98

AlphaColor(mode) -> FS98SDK

 -

 Different modes of transparent color effects are set.

 Use this command with the normal Poly() command if

 you want a transparent polygon. This is the propeller

 disk effect in FS98. (alpha blending)

 Note, it is very important to switch this mode off

 after drawing the last Polygon.

 Otherwise a page fault in the FS98 module HG2D.DLL

 may happen.

 -

 mode hex number:

 0 transparency mode OFF. Don't forget to

 use this command to switch back to normal

 color mode.

 1 nearly complete transparent

 ...

 F highest density in transparent mode, not

 longer transparent since the result is

 always gray.

 1x different modes of "funny" color effects

 -

 Example:

 Area(5 Lat Lon 5)

 PerspectiveCall(:alpha)

 Jump(:)

 ;

 :alpha

 Perspective

 RefPoint

 (rel :endobj 1 Lat Lon v1= 5000 v2= 100)

 Points(0

 -20 0 0

 -20 40 0

 20 40 0

 20 0 0

)

 AlphaColor(6)

 Poly (a 0 1 2 3)

 Poly (ai 0 1 2 3)

 AlphaColor(0) ; important !!!

 :endobj

 Return

 ;

 EndA

MoveTexture(x1 y1 x2 y2)

TextureBounds(x1 y1 x2 y2) -> FS98SDK

 -

TextureEnable(s) 2.20

 -

 s state s = 0 disabled

 s = 1 enabled

 -

 This instruction disables or enables an texture.

 Mainly this instruction is used to disable a texture

 after drawing a textured river or an textured

 taxiway to avoid sde effects on other objects.

Palette(name.ext)

 -

 The color palette file 'name.ext' is loaded. You

 cannot specify a drive or path name since this BGL

 code only supports 8.3 DOS name convention.

 You do not need this instruction if you are using the

 FS5 default color palette for your bitmap/texture

 files.

 Note, if you are using FS5.1 you will also need a

 corresponding *.HAZ file otherwise you cannot use the

 haze option with your scenery.

CustomColors(dec_num)

 -

 This command is used to reduce the number of

 customised colors (normally 64) in the active color

 palette to gain some space for special night color

 effects. You must have (or generate)

 a matching color palette file.

Brightness(1 - 100)

 -

 This command sets the brightness for a color. The

 range is from 0.0 to 100.0 percent.

 -> LineColor(), -> Surfacecolor()

 & Startsurface .. Endsurface

DotLine(x1 z1 y1 x2 z2 y2 num)

 -

 A dotted line from point(x1 z1 y1) to

 point(x2 z2 y2) is drawn. The number of dotts is

 num. The color of the dot is selected with

 -> LineColor()

Dot(x z y)

 -

 A single dot is drawn at the point(x z y). The color

 of the dot is selected with -> LineColor()

DotPt(#)

 - not for FS2K ?

 A single dot is drawn at the point with the

 number # of a predefined list of points. The command

 is repeated as many times as there are dot numbers in

 the brackets.

 -> LineColor(), -> Points()

Ball(size x z y) -> FS98 SDK

BigDot(size x z y)

 -

 A big dot is drawn at the position defined by the

 x y and z coordinates. This command is used for some

 interesting light effects. Set the color with

 LineColor() AND SurfceColor().

 The function of the size parameter is not absolutely

 clear now. Recommended value for size is 512. Format

 of the size parameter may be changed in future

 versions.

ConcavePoly

Concave -> FS98SDK

 -

 Indicate to the drawing system that a concave polygon

 follows. Does not work with bitmaps in FS5.0.

 Do not use this command if the following polygon

 is not concave since this slows down the frame rate.

 -> Poly(), -> StartSurface - Move..() - Draw..()

 EndSurface

Poly(vattr [vx vz vy len] pnum1 ... pnumn)

Poly(m vx vz vy len pnum1 ... pnumn)

Poly(a pnum1 ... pnumn)

 -

 A polygon is drawn with the points pnum1 to pnumn of

 the actual point list and with the actual surface

 color.

 Note: All polygons are only visible only from one

 side. The vector parameters indicate the direction

 from where the polygon can be seen. The brightness

 of the used color varies with the angle of the light

 source (the sun, day of time).

 Note! It seems FS5 cannot handle more than 100

 vertices in any single Polygon. Therefore SCASM now

 generates an error message on every ..Poly..()

 command if more than 100 vertices

 are detected. (in FS98 the limit may be 80 vertices)

 -> SurfaceColor(), -> Points()

ShadedPoly(vattr [vx vz vy len] pnum1 ... pnumn)

ShadedPoly(m vx vz vy len pnum1 ... pnumn)

ShadedPoly(a pnum1 ... pnumn)

 -

 A shaded polygon is drawn. The shading requires 3D

 points defined with the VecPoints() statement and

 ShadedColor(). The shading is used to get a smoth

 change of the brightness from one polygon to the

 next. This can make an octagonal object

 looking perfectly round. -> ShadedColor(),

 -> VecPoints()

TexWindow(vattr [vx vz vy len] pnum1 ... pnumn)

TexWindow(m vx vz vy len pnum1 ... pnumn)

TexWindow(a pnum1 ... pnumn)

 - FS5 only ?

 pnum# number (index) of a point from the point list

 -

 Defines a window through which a bitmap is shown.

 The window should not be concave.

 Do not use it for FS6/FS95 or later sceneries !!

TexPoly(vattr [vx vz vy len] pnum1 bx1 by1 ..pnumn bxn byn)

TexPoly(m vx vz vy len pnum1 bx1 by1 ..pnumn bxn byn)

TexPoly(a pnum1 bx1 by1 ..pnumn bxn byn)

TexPoly(at pnum1 ..pnumn)

 -

 Draws a polygon covered with a texture bitmap. The

 points has to be defined with the Point() command.

 The polygon is always drawn with the same brightness,

 regardless to the location of the sun. The brightness

 can be changed using TexPolyShading() if the bitmap

 is prepared for that (see -> TexPolyShading()).

 The bitmap-point bx1-by1 is tied to ptnum1 and so on.

 Image smoothing does not work with this command.

 Color shading can be done with TexPolyShading() and

 a special prepared bitmap.

 -> Bitmap(), -> Points(), -> TexPolyShading()

 -

 pnum# number (index) of a point from the point list

 bx# bitmap x coordinate (usually 0...255)

 by# bitmap y coordinate (usually 0...255)

 (SCASM accepts values from -32768 to 32767)

 t,b,r -> see vattr, texture automatic

 -> see also annex 9 for more information

TexPolyShading(vx vz vy)

TexPolyShading(p el hd)

 -

 This instruction sets the shading intensity of

 building bitmaps (side#.R8) in conjunction with

 textured polygons (->TexPoly()).

 This shading requires a special prepared bitmap file

 with 8 areas one for each of the 8 intensity steps).

 -

 vx x-vector component

 vz z-vector component

 vy y-vector component

 p format flag -> polar coordinates, vector will

 be converted to FS5 format by SCASM.

 el angle of elevation

 hd angle of heading

ShadedTexPoly

 (vattr [vx vz vy len] pnum1 bx1 by1 .. pnumn bxn byn)

ShadedTexPoly

 (m vx vz vy len pnum1 bx1 by1 .. pnumn bxn byn)

ShadedTexPoly

 (a pnum1 bx1 by1 .. pnumn bxn byn)

 -

 Draws a shaded polygon covered with a texture bitmap.

 The points has to be defined with the VecPoints()

 command.

 The bitmap-point bx1-by1 is tied to ptnum1 and so on.

 The shading is done similar to ShadedPoly().

 Bitmap colors above 127 are shown as black!

 ->VecPoints(), ->Bitmap()

 -

 parameters see -> TexPoly() command.

VecPoly

 (vattr [dx dz dy vx vz vy] pnum1 ... pnumn)

VecPoly

 (m dx dz dy vx vz vy pnum1 ... pnumn)

VecPoly

 (a pnum1 ... pnumn)

 -

 A polygon is drawn with the point pnum1 ... pnumn of

 the actual point list and with the actual surface

 color.

 This polygon command is very similar to the normal

 Poly(...) command. It seems the only difference is

 the origin of the visibility vector. In auto mode

 SCASM copies the coordinates of the first point

 (pnum1 -> dx,dz,dy) as the origin point of the

 vector and then calculates the vector components

 (vx,vz,vy) as usual.

TexVecPoly(a pnum1 bx1 by1 ... pnum# bx# by#)

TexVecPoly(vattr dx dz dy vx vz vy

 pnum1 bx1 by1

 ...

 pnum# bx# by#

)

 -

 This is the textured VectorPolygon (-> VecPoly())

 This instruction draws a polygon using the points

 pnum1 to pnum#. Like other textured polygon commands

 each point is combined with a specific pixel of a

 bitmap.

 -

 vattr vector attibutes (i.e. 'a') to

 indicate how SCASM should handle

 vector data.

 a automatc mode,

 dx,dz, dy, vx, vz, vy are

 taken/calculated from the

 first 3 points.

 m manual mode, all vector data

 must be entered.

 t,b,r -> see vattr, texture

 automatic.

 dx, dz, dy offset koordinates of a point on the

 polygons surface. You can chose one

 of the points defining this polygon.

 vx, vz, vy The 3 vector components.

 pnum# The number (index) of a point

 (defined with Points(..))

TexRelief(x y wx wy dx dy

 px py alt

 ...

 px py alt

)

ElevationMap(...) -> FS98 SDK

 -

 A loaded bitmap is used to draw a textured relief on

 the ground. For this purpose a regular grid of

 rectangles is defined and each grid node is bound to

 a specific altitude and texture point. Note, you are

 specifying the number of sides for the rectangels and

 the number of altitude points MUST match.

 The smallest grid is defined by X=1 and Y=1 and has

 4 grid points (vertices).

 This instruction should be used in a

 PerspectiveCall-ed subroutine. Be carefull; this

 command can be a real frame-rate killer.

 Note: Since this instruction also includes

 crash detection you should use it only with

 RefPoint(abs ...) and a corect altitude setting.

 In FS2K it was also used with RefPoint(rel ...).

 -> PerspectiveCall, -> PerspectiveCall2()

 -

 x, y amount of grid rectangles in x and y

 direction

 wx width of an grid rectangle in x direction

 (east-west)

 wy width of an grid rectangle in y direction

 (north-south)

 dx x position offset of texture pixel 0,

 left bottom corner

 (related to the refpoint)

 dy y position offset of texture pixel 0

 left bottom corner

 (related to the refpoint)

 Note: Pixel 0 is the south-west (bottom left)

 corner of the bitmap.

 px texture pixel x coordinate

 py texture pixel y coordinate

 alt altitude value for the given pixel and the

 current grid point (integer)

Jump(:Label)

 - ALL

 Execution is continued at :Label

 The jumptable is deleted everytime a new Area() is

 started, so you can use the same name in different

 areas. This also means you cannot jump out af an

 Area()->EndA block.

 Note: If not noted otherwise, all jump's and call's

 are using relative adressing with a 16 bit

 displacement.

Jump32(:Label)

 - CFS/FS2K

 Jump with a 32 bit address displacement

 Mainly used in aircraft model files (.MDL)

VectorJump(:Label m vx vz vy len)

VectorJump(:Label a pnum1 pnum2 pnum3 ...)

VectorJump(:Label p elev_angle heading len)

SeparationPlane(...) -> FS98 SDK

 -

 The elements vx, vz and vy are representing a vector

 standing rectangular on a virtual plane (surface).

 Len is a distance in RefPoint-units. The following

 commands are executed if the distance from the viewer

 (aircraft) to the virtual plane measured in the

 vectors direction is greater than 'dist'.

 Otherwise execution is continued at :Label (Jump to

 :Label).

 In some cases the plane is identical with one of the

 surfaces of an object you have just constructed. If

 so you can use the auto-vector feature to calculate

 the vector and the distance.

 You have to enter only 3 point numbers of the object

 surface (polygon). If there are more, the others will

 be ignored.

 -

 Note: This instruction has the same function as the

 GLUE Template in the FSFS aircraft factory for FS5.1.

IfVarRange(:Label Var minval maxval)

 -

 The contents of the FS5 variable Var is tested. If

 the value is within the range of minval and maxval

 the execution is continued with the next command.

 Otherwise a jump to :Label is performed.

 - Var FS5 variable number in HEX.

 minval minimal allowed value (decimal/or 0x. hex)

 maxval maximum allowed value (decimal/or 0x. hex)

IfVarRange2(:Label Var1 MinVal1 MaxVal1

 Var2 MinVal2 MaxVal2

)

 -

 conditions ANDed

IfVarRange3(:Label Var1 MinVal1 MaxVAl1

 Var2 MinVal2 MaxVal2

 Var3 MinVal3 MaxVal3

)

 -

 5.1 only !

IfVarAnd(:Label Var Mask)

 -

 The contents of the FS5 variable Var is AND_ed with

 the value of Mask. If the result of this operation

 is TRUE execution is continued with the next command.

 Otherwise execution is continued at :Label.

 -

 Var FS5 variable number in HEX

 Mask Bitmask, any 16 bit HEX value

IfHRes(:Label r p)

IfHSize(:Label r p) -> FS98 SDK

 -

 The horizontal size is tested. If the object

 size given by r does not cover p pixels on the

 screen a jump to :Label is performed and the

 object is not drawn. But you can force FS to

 draw it just by increasing your zoom factor

 during flight.

 The effect is like using binoculars.

 -

 r object radius, integer

 p pixels, integer

IfVRes(:Label r p)

IfVSize(:Label r p) -> FS98 SDK

 -

 The vertical size is tested.

 -

 r object radius, integer

 p pixels, integer

SetVar(FSvar val)

 -

 FSvar FS5 local variable number in HEX

 val new value in decimal (or hex if started

 with 0x##)

 Please use upper case characters for hex

 numbers.

 If used in Library objects or in aircraft (MDL)

 files the variable is limited to this object.

SetVar7E(FSVar val)

 -

 This command sets a global variable.

Call(:Label)

Call32(:Label) ; version for 32 bit offset (FS98+)

 -

 Calls a subroutine at :Label. After the Return from

 the subroutine execution continues with the next

 command. -> Return

Return

 Returns the control to the next instruction after the

 ..Call() command. (Return from subroutine).

 Every subroutine MUST end with a Return command.

 All parts entered with a ..Call.. command should be

 considered as a subroutine.

 Most FS5 'database error' mesages are caused by

 forgoten Returns or misplaced Jump instructions.

 -> Call(), -> ..Call()

PerspectiveCall(:Label)

AddObj(:Label) -> FS98 SDK

 -

 Use it for drawing all 3 dimensional objects. This

 instruction causes FS5 to determine which objects

 or part of objects are hidden and which not. There

 is no need to draw flat ground surfaces (color or

 bitmap) with this instruction.

 Typical sequence:

 ;

 Area(...)

 PerspectiveCall(:House)

 Jump(:)

 :House

 Perspective

 RefPoint(:H_end ...)

 SurfaceColor(...)

 Poly(...)

 ...

 :H_end

 Return

 ...

 EndA

PerspectiveCall32(:Label)

 -

 The 32 bit Version of PerspectiveCall()

AddMountain(:Label) -> FS98SDK

PerspectiveCall2(:Label)

 -

 implemented for testing, name may be changed in

 future versions.

Perspective

 -

 This should be the first command in a subroutine

 called with PerspectiveCall(). If you forget this

 command you will see nothing or even crash !

ShadowCall(:Label)

 -

 The shadow of an static object at :Label is drawn.

 Do not direct a ShadowCall to a Perspective command,

 use the next command instead. Otherwise scenery

 hangups can happen.

 -> Return, -> see Building(...) example

ShadowCallVI(:Label var)

 - FS98, FS2K

 SHADOWVINSTANCECALL in FS98SDK

 This command is used to draw a shadow of variable

 objects. The position is specified in an array of

 variables. Used for dynamic objects.

RotatedCall(:Label xdeg ydeg zdeg)

 -

 The subroutine at :Label is called with rotated

 coordinates. The pivot point is the active

 RefPoint().

 -> Return

TransformCall(:Label delta_x delta_z delta_y

 x_deg xvar

 y_deg yvar

 z_deg zvar)

 -

 This is an expansion of the RotatedCall().

 A subroutine is called with transformed coordinates.

 That means you can assume the new temporary reference

 point is at the given delta_# distances from the

 original point. Also the coordinate system is rotated

 around this point according the #_deg values.

 Note: Shadows produced from the transformed scenery

 element will also be moved. This can cause funny

 flying shadows.

 -> Return

 -

 :Label Address of the subroutine which is called

 with a transformed coordinate system.

 delta_# linear displacement of the object (integer)

 #_deg rotation in degrees

 (floating point, i.e. -22.5)

 #_var variable (hex), 0 if not used !

PBHCall(:Label var)

 - FS95, FS98, FS2K

 VINSTANCE_CALL in FS98SDK

 This command is used to rotate an object around

 all 3 axis. Var addresses an array of 3 variables

 holding the values for pitch bank and heading.

 This command is often used for programming dynamic

 library objects.

CallAsm(:Label seg)

 - FS5.0 & FS5.1 only

 Calls an 8086 assembly language programm at :Label

 I have no information about the seg (hex) parameter.

 Set it to 1. The assembly language instructions can

 only be entered using the Dbx(...) binary

 instructions family.

 FS5.x only, ignored by FS6.0/FSFW95 and later to

 avoid conflicts due to the new 32 bit environment.

AsmCall32(:Label)

 - FS95 FS98

 This is the 32 bit (long) version of CallAsm()

 The FS2K scenery SDK says this command is reserved

 and should not be used.

RRStart(typ wid x z y)

 - CFS/FS2K

 See SCACMD3.DOC

 -> FS98SDK

RoadStart (width delta_x delta_z delta_y)

RiverStart (width delta_x delta_z delta_y)

TaxiwayStart(width delta_x delta_z delta_y)

RoadCont (delta_x delta_z delta_y ...)

RiverCont (delta_x delta_z delta_y ...)

TaxiwayCont (delta_x delta_z delta_y ...)

 -> old

RoadMoveTo(width delta_x delta_z delta_y)

RoadMoveTo2(width delta_x delta_z delta_y)

TaxiMoveTo(width delta_x delta_z delta_y)

RoadLineTo(delta_x delta_z delta_y ...)

RoadLineTo2(delta_x delta_z delta_y ...)

TaxiLineTo(delta_x delta_z delta_y ...)

 -

 Every ..Move../..Start instruction sets the starting

 point of a road or taxiway relative to the active

 reference point. The ..Line../..Cont instruction

 draws a road or taxiway from the previous point to

 the point defined in this instruction and stores his

 position as a starting point for an following

 ..Line../..Cont instruction.

 During dusk and nights roads have orange lights and

 taxiways have blue lights. The color can be chosen by

 -> SurfaceColor().

 If a texture is loaded just before these drawing

 commands the river or taxiway is drawn with this

 texture. You can use TextureEnable(0) to disable

 this texture.

 -

 width 1/2 width in refpoint units (integer)

 Negative values can be used to switch off the

 road/taxiway lights.

 delta_x distance in east-west direction from

 reference point or from the previous point

 (integer).

 delta_z height difference, usually 0 (int)

 delta_y distance in north-south direction from

 reference point or from the previous point

 (integer).

 Note! The ..LineTo() commands are repeated as many

 times as there are coordinate triples in the

 brackets.

 Both name versions are available and generate the

 same code. The new names are added for better match

 with the FS98 SDK.

 Important note: For FS2K use RRStart() for roads and

 rivers.

LayerCall(:Label layer)

 -

 Ground surface polygons drawn within a LayerCall'ed

 subroutine are sorted according to their layer number

 before they are drawn into the scenery. The sorting

 is done with all currently visible scenery elements,

 even if they are in different BGL files.

 -

 layer number (1 to 63 decimal) of a priority layer

 (category layer in FS98SDK) for a flat

 surface polygon to cover the ground. Polygons

 with higher number are always drawn on top of

 the others.

 Use the following layer / category numbers:

 4 Mesh, seed, ground

 8 ground polygon / texture overlays

 12 river

 16 road

 20 lines, strobes

 24 runways, taxiways

 28 mountain

 32 crater

 60 shadows

 Note: It is reported that only layer numbers

 4, 8, 12, 16 ... are working in FS2K

 See "The Categories System" and BGL_ADDCAT in the

 Microsoft FS2K scenery SDK for mor information.

RunwayData(Lat Lon <List_of_parameters_in_any_sequence>)

 -

 Moved to SCA_RWYS.DOC

RunwayLights(<list_of_parameters_and_values>)

ApproachLights(<list_of_parameters_and_values>)

 - FS5.0 - FS98 / not FS2K

 Moved to SCA_RWYS.DOC

Building(delta_x delta_z delta_y

 height x y type wallflags)

 -

 See SCA_BLDG.DOC

City

 - FS5 .. FS98

 See SCA_BLDG.DOC

IfPlaneInBox(:Label xmin xmax zmin zmax ymin ymax)

 -> FS98SDK

Monitor3D(:Label xmin xmax zmin zmax ymin ymax)

 -

 The 3D area is monitored. If the aircraft is NOT in

 the specified area a jump to :Label is performed.

 The values are always in meters.

 Note, this command cannot be roteted (RotatedCall) or

 transformed (TransformCall) in FS5.x and FS2K

 see -> MonitorTr()

AreaSense(:Label ptx0 pty0 ... ptxn ptyn)

 -> FS98SDK

SenseBorder(:Label ptx0 pty0 ... ptxn ptyn)

 -

 The following instruction block is executed if we are

 within the polygon defined by the list of point

 coordinates. Oterwise execution is continued at

 -> Label.

 Concave polygones are not allowed and the points

 should be entered in a clockwise order !

IfVis(:Label ptnum0 ... ptnumX) -> FS98SDK

MonitorPt(:Label ptnum0 ... ptnumX)

 -

 This command tests whether one of the points in

 the list is visible or not. If none of the points

 is visible a jump to :Label is performed.

 This command is usually used with 4 or 8 points

 describing an flat or 3-dimensional area.

 The points have to be defined with the Points()

 command before.

MonitorTr(:label

 dx dz dy

 wx wz wy

 xdeg ydeg zdeg

)

 - FS 5.1 & FS95 & FS98 & FS2K

 This is the transformed 3D monitoring instruction.

 The monitored 3D area is shifted (from the RefPoint

 position) and rotated. A jump to :Label is performed

 if the aircraft is outside.

 -

 dx x offset from the actual reference point

 (int)

 dz z offset from the actual reference point

 (int)

 dy y offset from the actual reference point

 (int)

 wx total x width of the area (int)

 wz total z width/height of the area (int)

 wy total y width of the area (int)

 xdeg x rotating angle

 ydeg y rotating angle

 zdeg z rotating angle

SurfaceType(type width_x width_y alt)

 - FS5 .. FS98,FS2K

 This instruction lets you define the surface

 properties of a given rectangular area. Note, you

 cannot 'harden' an elevated surface with this

 command! Use aditional section 16 commands for this.

 -

 type 0: smooth surface, runnway, taxiway

 1: rough surface, grass

 2: water surface, causes

 splash / crash

 width_x

 width_y N-E / N-S deviation, depends on the

 scale factors in the RefPoint()

 command. The width is measured from

 the left (or upper) side to the

 right (or lower) side. (integer)

 alt Altitude of the surface measured in

 meters (integer).

 In FS2K I found this parameter

 always 0.

Inst_7D -> obsolete, use POverride

 This instruction is used very often just before

 TexPoly() and ShadedTexPoly(). It seems this

 instruction prevents the bend up

 effect of the bitmaps when getting close to it.

POverride -> FS98SDK

 -

 Perspective Override

 This instruction causes FS to use a special processor

 for the next 3 or 4 vertex textured polygon. This

 reduces the texture distortion.

 For more information please see the FS98SDK.

TimerSw(:Label) -> obsolete, don't longer use, vers 1.7

SetWeather(:Label) -> FS98SDK

 - FS5 .. FS98,FS2K

 This instruction works like a timer controlled

 switch. The following code is executed once about

 every second to set new weather conditions. You can

 test this with 3D objects.

 The programm code that defines the lift must follow

 imediately this instruction and must end with Return.

 :Label points to an instruction where to continue,

 after the lift is created or if the switch is not

 active. This is usually the end of an Area() block.

 -

 example:

 Area(5 ...)

 SetWeather(:end)

 ; TimerSw(:end) ; old

 Perspective

 RefPoint(rel :end_lift ...)

 IfPlaneInBox(:end_lift ...) ; to limit the

 ; border of the

 ; lift area

 ...

 Weather(14C 200 6000 0) ; Lift in older

 ; versions

 :end_lift

 Return ; very important !

 ;

 :end

 EndA

Lift(flags dir factor extra) obsolete, vers. 1.7

Weather(flags dir factor extra) -> FS98SDK

 - FS5 .. FS98,FS2K

 This is the instruction to change the weather

 conditions. In the moment only thermal lift and lift

 by deflected air are known. Thermal lift seems to

 work always if the sun is shining<g>. Lift produced

 by deflected air only works if surface wind is

 enabled in the weather menu and the wind direction

 is similar to the "dir" parameters. The strength

 of the lift depends on the wind speed, wind direction

 and the factor (of lift ?). Depending on the wind

 speed (10..40 kts) the lift factor is typicaly from

 6000 to 1000.

 -

 flags hex value, typical values are 14C, 34C, 44C

 first digit:

 1.. enables lift created by deflected air

 2.. enables turbulent air

 4.. enables thermal lift. Thermal lift

 depends on the time of day. It seems

 the other parameters have no effect

 on thermal lift.

 .4C always found this value. Setting it

 to 00 or FF seems to do nothing.

 dir direction (heading in degrees) from where the

 wind should come to produce a maximum of

 lift. Only valid if "flags" are "1..".

 factor this factor is used to control the amount of

 lift. Typical values are 2000 to 6000. The

 format of this parameter may be changed in

 future versions.

 extra reserved, set to 0.

Nop

 -

 No Operation. This command does nothing. It only

 occupies 2 bytes.

 Usefull for patch programms or to make space for

 later patches. Same as Dwx(0x02).

PolyM(a pnum1 ... pnumn)

PolyM(m vx vz vy len pnum1 ... pnumn)

PolyM(vattr [vx vz vy len] pnum1 ... pnumn)

 - SCASM 2.08,FS98,FS2K

 This command draws a polygon similar to the Poly(..)

 type. A SurfaceColor() should be defined first. This

 polygon can be filled with a texture if the Bitmap()

 command is used. The advantage of this command is,

 that multible polygons can be drawn with this single

 command and every polygon can have one "concave

 point".

 There is no need to use the ConcavePoly command, but

 you have to start with the "concave point". This

 point must be marked by a "-" sign, even if the

 point index is zero!

 Note: Due to the binary format in the BGL code it

 is not possible to use point numbers larger than 127.

 Example:

 ...

 Points(0

 -327 0 861 ; 0

 -246 0 792 ; 1

 -101 0 619 ; 2

 43 0 135 ; 3

 309 0 -515 ; 4

 328 0 -740 ; 5

 269 0 -860 ; 6

 272 0 -540 ; 7

 -148 0 615 ; 8

 -260 0 751 ; 9

)

 SurfaceColor(4 F0)

 IfVarAnd(:B 340 FFFF) ; textured ground ?

 Bitmap(desert.r8 8 128 0 128)

 :B

 PolyM(a

 -8 9 0 1 2 3

 -7 8 3 4 5 6

)

 ...

Some commands to produce any hex-value in the visual scenery area. These are included to give experts a tool for trying new scenery commands. Note, the internal instruction counter variable $IC always contains the relative address of the first value in a multi D..() instruction.

Dlx(hhhhhhhh) DefineLongHex. A 32 bit hex value is

 inserted.

Dld(dddddddd) DefineLongDecimal. A decimal value is

 converted in 32 bit hex format and

 inserted.

Dwx(hhhh .. hhhh) DefineWordHex. All hex values in the

 brackets are copied into the file.

Dwd(ddddd .. ddddd) DefineWordDecimal. All decimal values

 in the brackets are copied into the

 file.

Dbx(hh .. hh) DefineByteHex.

Dbd(dd .. dd) DefineByteDecimal

Dba(AbCdE) DefineByteASCII

Dr4(f_val)

 - 2.43 / FS2K

 This command defines a 4 bytes REAL4 value from

 an floating point input number.

 This command is used to build up data tables

 which some of the new FS2K instructions in MDL

 files needs.

--

