SCASM command reference 3

2.85

This document contains some new or less often used visual scenery commands. Some of them are mainly for CFS scenery and others are for use in library objects or aircrafts (.MDL files).

There is also a small group of commands which I implemented using information in the FS98 SDK but without knowing what they are doing.

In the moment this document is an unsorted collection because it is copied from several other documents.

One of the new features of CFS is the ability to handle .BMP

files. These must be uncompressed bitmaps with a color palette.

The BMP's can have an individual color palette. We are not

longer bound to an FS internal palette.

Usual sizes of CFS bitmaps are:

 256 * 256

 128 * 128

 64 * 64

 32 * 32

The Pixel coordinates for an 256 * 256 BMP are:

 0, 0 lower left (sw)

 255, 255 upper right (ne)

The small bitmaps are internally expanded to 256 * 256.

Note: If you exclude visual scenery elements in CFS it seems that you are also excluding your ground elevation definition at least if they are defined with instructions I_A3() and/or I_A9(). If this happens you have to inlude a "flat replacement" for them in your scenery.

You will recognise this problem by a messup of the screen display. Changeing the view to "up" and then return to the normal view will give you a correct screen display for a short moment.

RGBSColor(a r g b)

 - CFS/FS2K

 Set RGB surface color.

 Surface colors are daytime sensitive, that is their

 brightnes depends on the suns position.

 -

 r red value, 0...255

 g green value, 0...255

 b blue value, 0...255

 a color attributes, flags (one hex byte)

 currently only the following values are

 known:

 Ex with x (0 to F) giving

 different values of opacity.

 (zero opacity is complete transparent)

 EF solid RGB color (full opaque)

 E0 transparent RGB color

 Bx ? (B0...BF)

 0F ?

 F0 the old FS5 color palette code in

 R-chanel is selected (G=0 and B=0)

RGBLColor(a r g b)

 - CFS/FS2K

 Set RGB line color, for parameters see RGBSCOlor().

LoadBitmap(x type a r g b name_of_a_BMP_file)

 - CFS/FS2K

 Loads a bitmap in uncompressed BMP format. These

 bitmaps usually have formats:

 256x256, 128x128, 64x64, 32x32 and uses 256 color

 palette.

 If the bitmap is smaller than 256x256 it seem to be

 expanded. You have to take this into account when

 dealing with bitmap coordinates.

 -

 x unknown, always found 0

 (priority/index ?)

 This parameter may be omited in furure SCASM

 versions due to format correction.

 type type/classification and flag bits for this

 texture.

 This classification is used in the

 Option/Setup menus (only works in CFS)

 i.e. for -> textuted ground ON/OFF selection.

 0 none

 1 aircraft

 2 map

 3 water

 4 sky

 5 ground

 6 building

 7 effect (FS2002)

 8 damage (FS2002)

 Optional flag bits (FS2K). These flag bits

 enables the search and conditional load of

 replacement bitmaps with the following name

 template(s):

 L <name>_LM.BMP (night) light map

 W <name>_WI.BMP winter bitmap

 H <name>_HW.BMP hard winter bitmap

 F <name>_FA.BMP fall/autum bitmap

 S <name>_SP.BMP spring bitmap

 if needed use these flags as a prefix to the

 type number without spaces.

 example: L6 for a building with aditional

 night bitmap or WSF5 for a ground texture

 with aditional seasonal replacements.

 It seems that not all flags work with all

 texture types.

 argb color code, used if texture not found or

 disabled. see -> RGBSColor()

 name Filename of the .BMP file.

 Long filenames allowed. Use quotation

 marks "" if containing spaces.

 -

 Remark: Do not use the old BitmapMode() instruction

 with this command.

RRStart(typ wid x z y)

 - CFS/FS2K

 old I_A8(...)

 Defines a new starting point for roads and rivers.

 Road and rivers are normally covered with textures.

 -

 typ 0 use last SurfaceColor() / RGBSColor()

 1 use last texture, Bitmap() / LoadBitmap()

 2 major road -> v_road_major.bmp

 3 minor road -> v_road_minor.bmp

 4 railroad -> v_railroad.bmp

 5 river (small) -> v_river.bmp

 wid width in m

 Note: this command should always be followed by an:

 RoadCont(delta_x delta_z delta_y) or

 RiverCont(delta_x delta_z delta_y)

 command which is equal to the old RoadLineTo(...)

 command.

 In FS2K most rivers are still drawn with old

 RiverStart() RiverCont() sequence.

LoadBitmapClass(class)

 - CFS/FS2K

 old I_A5(class)

 This command loads and activates one of the

 registered tile bitmap classes for the use with

 I_9A().

 -

 class Number of the bitmap class (0...255 in the

 default scenery). A class usually contains

 1 to 7 .BMP bitmaps.

 Note: The bitmap classes are defined in the file

 CLASSLIST.BGL. In the moment it is not completely

 tested how this works. It may happen that you

 cannot select these bitmaps if your scenery is too

 far away from the default scenery. If the selected

 bitmap class contains more than one .BMP they are

 displayed in some sort of "random" order in the

 following I_9A() instruction.

 Note: It is possible to use class numbers above 255.

 But such numbers are not contained in the default

 CLASSLIST.BGL.

MeshWith1Tex(

 nx ny xwid ywid xofs yofs

 bxo byo flg xbpg ybpg

 <list of elevation grid points>

)

I_9A(...) obsolete

 - CFS/FS2K

 This command works similar to the old TexRelief()

 command. This is a user defined textured ground

 tile with an elevation grid map. The texture class

 has to be loaded with I_A5().

 Use this command always with Refpoint(abs ...),

 otherwise your final elevation is not exactly

 defined. The actual size of the whole tile depends

 on the scale factor in the current reference

 point. In the default scenery the horizontal size

 of a tile is aproximately 7500 meters (abt. 4 nm).

 (total_x_size_in_meters = nx * xwid * scale_factor)

 -

 nx the tile is devided into this number in

 x (E-W) direction.

 ny the tile is devided into this number in

 y (N-S) direction.

 Normally both numbers are equal (1, 2, 4, 8).

 xwid x size of one sub tile (total size is

 nx*xwid).

 ywid y size of one subtile

 xofs x offset for the left lower corner

 (south west)

 yofs y offset for the left lower corner.

 these values are usually the negative

 number of half of the total tile size.

 bxo bitmap pixel offset in x direction, usually 0

 byo bitmap pixel offset in y direction, usually 0

 flg flags, pupose unknown, normally 1

 xbpg	number of bitmaps per grid in x direction

 Due to the binary instruction format only

 values from 0.0625 (=1/16)

 to 15.9375 (=16 - 1/16) are possible.

 SCASM does not check these limits.

 ybpg number of bitmaps per grid in y direction

 Note: it seems that CFS becomes confused if

 xbpb and ybpg are not equal.

 <list..>

 The list of the elevation points. The

 fist point is in the south west. Only

 integer are numbers allowed.

 The number of points is:

 (nx + 1) * (ny + 1)

 Example, for nx = 2 and ny = 2

 (2 + 1) * (2 + 1) = 3 * 3 = 9

 Typical code sequence looks like:

 Area(5 00:00 00:00 100)

 PerspectiveCall2(:tile)

 Jump(:end)

 ;

 :tile

 Perspective

 RefPoint(abs :tile_end 1 00:00 00:00 v2= ###)

 ; set V2 to a value about the diameter of

 ; the tile

 ;

 I_A5(1) ; select bitmap class

 I_9A(2 2 1882 2049 -1882 -2049

 0 0 1 4 4

 ; list of elevation points follows

 37 24 25 ; south row

 37 20 26 ; middle row

 30 18 30 ; north row

)

 :tile_end

 Return

 ;

 :end

 EndA

MeshWithTexList(

 nx ny xwid ywid xofs yofs

 bxo byo flg xbpg ybpg

 <list of elevation grid points>

 <texture class map>

)

I_A3(...) obsolete

 - CFS/FS2K

 This command works similar to I_9A().

 The difference is that no texture needs to be

 selected before. The texture classes are

 activated from the texture class list included

 in this command.

 Only texture class numbers from 0 to 255 are

 possible because of the limited space in this

 command format (one byte per entry).

 The first texture is the south west one.

 the total number of texture classes for the map is:

 nx * xbpg * ny * ybpg

 Example: For a tile with

 nx = 2, ny = 2, xbpg = 4, ybpg = 4

 we will need

 2 * 4 * 2 * 4 = 64 entries for the texture map.

RotateToAircraft(:Lab dx dz dy fx fy fz vx vy vz)

 - CFS/FS2K

 old I_A7(:Lab dx dz dy fx fy fz vx vy vz)

 This is a new sort RotatedCall.

 Can be used to automatically rotate something

 towards the players aircraft ;-)

 -

 :Lab Label of the called subroutine

 dx offset in x direction

 dz elevation offset

 dy offset in y direction

 fx if this flag is 1, the x axis is rotated

 towards the players aircraft.

 fy if this flag is 1, the y axis is rotated

 towards the players aircraft.

 fz if this flag is 1, the z axis is rotated

 towards the players aircraft.

 Note, normaly only one of these flags

 should be used in one command.

 vx		variable containing x rotation angle,

 normally 0

 vy variable containing y rotation angle,

 normally 0

 vz variable containing z rotation angle,

 normally 0

EnumBitmaps(:Lab 0 ... 0)

BGL_List(:Lab 0 ... 0)

 old I_64(:Lab 0 ... 0)

 - CFS/FS2K

 The purpose of this command is not completely known.

 It has something to do with registering bitmap

 classes to use with user defined ground tiles.

 -> I_A1().

 There should be as many 0's as LoadBitmap()

 instruction follows.

RegisterBitmapClass(num x :Lab)

 - CFS/FS2K

 old I_A1(num x :Lab)

 This command has something to do with the

 registering of the bitmaps for the ground tiles.

 Note: There can be more than one bitmap in one class.

 This is to avoid regular pattern tiles. In the CFS

 default scenery where the tiles are usually covered

 by 8 * 8 = 64 bitmaps one class contains up to 7

 bitmaps. But a lot of them like 0 = water has only 1

 bitmap in it.

 Note: It is possible to define classes higher than

 255, but they can only be used with I_A5()/I_9A()

 and not with I_A3().

 -

 num number of the bitmap class to define

 x unknown, only found values in the original

 classlib.bgl is 2, 3, 5, 6, 10, 11

 The following table was reported to me:

 Surface type

 0 concrete

 1 grass

 2 water

 3 bumpy grass

 4 asphalt

 5 short grass

 6 long grass

 7 hard turf

 10 city

 11 forest

 12 PSP matting ?

 :Lab points to the I_64() instruction just before

 the LoadBitmap()'s related to this class

 -

 Typical pattern example:

 Header(1 47 49 9 11)

 LatRange(49 47)

 Area(E 48:28 10:12 255)

 :C0

 I_64(:C1 0)

 LoadBitmap(0 5 FE 128 128 128 water.bmp)

 :C1

 I_64(:C255 0 0 0)

 LoadBitmap(0 5 FE 128 128 128 pattern1.bmp)

 LoadBitmap(0 5 FE 128 128 128 pattern2.bmp)

 LoadBitmap(0 5 FE 128 128 128 pattern3.bmp)

 ;

 ; ... more instructions ...

 ;

 :C255

 I_64(:C_reg 0 0 0)

 LoadBitmap(0 5 FE 128 128 128 pattern4.bmp)

 LoadBitmap(0 5 FE 128 128 128 pattern5.bmp)

 LoadBitmap(0 5 FE 128 128 128 pattern6.bmp)

 ;

 :C_reg

 I_A1(0 6 :C0) ; first class

 I_A1(1 6 :C1)

 ; ...

 I_A1(255 6 :C255) ; last class

 EndA

I_A9(:Lab xofs zofs yofs xwid hig ywid p b h)

 -

 This is another sort of position detection similar

 to the common Monitor3D() and MonitorTr() commands.

 The jump to :Lab is performed if plane is not

 in the box.

 -

 xofs the middle of the box is shifted in E-W

 direction

 zofs -"- up down direction

 yofs -"- N-S direction

 xwid total width in E-W direction

 hig total hight

 ywid total width in N-S direction

 p pitch angle

 b bank angle

 h heading angle

 Note: I found this instruction only in CFS1

 object libraries. During my tests in FS2K I

 could not get it to work within rotated

 subroutines. Maybe I misunderstood the SDK.

VarBase(:Lab)

 - CFS/FS2K

 Defines an data area at :Lab

 It seems this data/variable area is used for

 comunication with library objects and other

 data tables. Used in MDL files.

 There are special values for :Lab

 :[-1] resets varbase to previous parameter

 block

 :[0] sets varbase to GLOBAL

 :[1] resets varbase to previous local

 parameter block

VarBaseOverride(hexval)

 - CFS/FS2K

 old I_9F(hexval)

 Sets a new var base address for the next

 variable access only. Used in MDL files.

 The address is implemented as hex value since

 in most cases the special values 1, 0, -1, as

 mentioned in VarBase describtion are used.

Interpolate(base invar outbase outvar tabbase taboffs)

 - 2.43 FS2K

 base var_base (:Label32) of a table holding

 the new variables and the conversion

 table.

 (see VarBase for special values)

 invar FS input variable number (in HEX)

 outbase var_base of output, usually 1

 (see VarBase for special values)

 outvar output variable (HEX)

 This is in fact the byte offset for

 a new variable

 tabbase var_base of conversion table

 usually 1

 (see VarBase for special values)

 taboffs conversion table offset (in var_base)

 -

 This command interpolates values from an input

 variable to an output variable by using an

 table. The table format is as follows:

 dwd(<count>) ; number of the following pairs

 dwd(<input> <output>)

 ...

 Note: Outbase and tabbase should be Labels but are

 implemented as hex values. If you really need

 a Label here use [:Label].

 Please see the VarBase command for the special

 values of the ..base labels.

 Used in MDL files.

 The below example is for an simple 1:1 conversion

 table as often found in MDL files of CFS and FS2K.

 ...

 Jump(:NextCommand)

 :Table

 Dbx(0 0 0 0 0 0 0 0 0 0 0 0)

 ; 12 (0xC) Bytes space for local output

 ; variables

 Dwd(2) ; 2 entry pairs in interpolation table

 Dwd(-32768 -32767) ; smallest input and

 ; output value pair

 Dwd(32768 32767) ; largest input and

 ; output values

 :NextCommand

 VarBase(:Table)

 Interpolate(:[-1] 68 1 0 1 C)

 Interpolate(:[-1] 8C 1 4 1 C)

 Interpolate(:[-1] E8 1 6 1 C)

 Interpolate(:[-1] EA 1 8 1 C)

 CallLibObj(0 47BC6E05 11D2F98A 1000849C 2AE60C5A)

 VarBase(:[-1])

 ...

Transform_Mat([m]

 xo zo yo

 m00 m01 m02

 m10 m11 m12

 m29 m21 m22

)

 - 2.43 / FS2K

Transform_Mat(a xo zo yo p b h)

 - alternate format 2.49h / FS2K

 This instruction transforms the coordinate system

 for all object instructions until an TransformEnd

 instruction is found. The effect is similar to

 the TransformCall() instruction but no subroutine

 call is used. Also all rotations are defined

 through an so called transformation matrix.

 If you use the letter "a" as the optional

 specifier, SCASM will switch to automatic mode

 and calculate the matrix for you from the

 pitch, bank and heading angles.

 Positive pich numbers are "nose down" and

 positive bank numbers are "left side down".

 All matrix values are floating point numbers.

 See also TransformEnd.

 Example from an FS2K MDL file:

 ...

 Transform_Mat(

 -1 1021 900

 1 0 0

 0 1 0

 0 0 1

)

 VecPoints(...)

 Specular(0)

 LoadBitmap(0 1 EF 128 128 128 xyz.bmp)

 ShadedTexPoly(...)

 ...

 TransformEnd

 ...

 2nd example from an FS2K MDL:

 ...

 Transform_Mat(

 3157 146 1178 ; xzy

 1 0 0

 0 1 0

 0 0 1

)

 Specular(0)

 RGBSColor(EF 255 255 255)

 IfVarAnd(:L27F0 D8 10)

 VarBaseOverride(0)

 IfVarAnd(:L27F0 282 2)

 Light(m 6 0 0 0 40 0.6 0.4

 FF 255 255 255

 1 0 0)

 :L27F0

 TransformEnd

 ...

 3rd example:

 ...

 Transform_Mat(

 0 761 -8310 ; xzy

 1 0 0

 0 -0.4342 -0.9008

 0 0.9008 -0.4342

)

 Specular(0)

 RGBSColor(EF 255 255 255)

 IfVarAnd(:LDF2 D8 10)

 VarBaseOverride(0)

 IfVarAnd(:LDF2 282 2)

 Light(m 6 0 0 0 40 0.6 0.4

 FF 255 255 255

 0.2868 0.9436 0.1656)

 :LDF2

 TransformEnd

 ...

TransformEnd

 - 2.43 / FS2K

 This instruction marks the end of the code

 handled by Transform_Mat().

 There must be ONE TransformEnd for EVERY

 Transform_Mat() !

Animate(:Lab32 invar t_base t_ofs xlat_x xlat_z xlat_y)

 - 2.43 / FS2K

 Lab32 input base address (->VarBase)

 invar input variable (hex)

 t_base var_base_32 of table (hex value)

 t_offs variable offset to add to var base (hex)

 xlat. translation values (floating point format)

 often found 0.0

 -

 This instruction animates object parts by using an

 key frame table. The end of the animated part(s)

 must be marked by TransformEnd.

 According to the MS scenery SDK there are 2 table

 formats. The format is indicated by the first

 word in the table. The codes are:

 1 = ANIM_TRANS

 for linear shifting (translation)

 3 = ANIM_QUAT

 for rotation

 The format of the table is described in the

 FS2K scenery SDK and it will show in SCASM syntax

 like:

 :Tab_base

 Dwd(1) ; format indicator, 1 or 3

 Dr4(-1) ; previous frame number

 Dr4(0 0 0 0) ; storage for FS internal

 Dr4(0 0 0 0) ; matrix data

 Dr4(0 0 0 0)

 Dr4(0 0 0 0)

 Dwd(<rows>) ; number of following rows

 ;

 ; the above 72 bytes header is the same

 ; for both formats

 If the format indicator is 1 = ANIM_TRANS every

 row is:

 Dr4(<nKey>) ; key frame number (0, 1, 2 ..)

 Dr4(<x> <z> <y>) ; linear offset values

 If the format indicator is 3 = ANIM_QUAT every

 row is:

 Dr4(<nKey>) ; key frame number (0, 1, 2 ..)

 Dr4(<f1> <f2> <f3> <f4>) ; ?

 Regardsless of the actual number of rows it

 seems that the last keyframe number (row) is

 always 200.

 Unfortunately I don't have more specific

 information in this moment.

 ...

 :LF836	; F836

 VarBase(:Tab_base)

 Animate(:[-1] D4 1 0 1 -287.4 -1)

 VarBase(:[-1])

 ...

Specular(state)

I_93(s) obsolete

 - 2.43 / FS2K

 state only found values are 0 or 1

 -

 purpose unknown.

Crash(:Lab1 rad :Lab2 :Lab3 dens)

 - 2.49 / CFS FS2k

 Lab1 Points to the end of the following crash

 code.

 rad the objects ground radius

 Lab2 Points to the RefPoint() instruction used

 with this object. This must be a normal

 refpoint with an scale factor.

 Lab3 Points to the RotatedCall() used with this

 object. Set it to :[0] if not used.

 dens scenery density code (min) for this object

 -

 Test for crash detection.

 This command should be used before using the

 PerspectiveCall() command.

 Do not use it in library objects.

CrashIndirect(:Lab1 :Lab2 :Lab3 fl dens)

I_95(...) obsolete

 - 2.43 / CFS FS2k

 Lab1 Points to the object call (mandatory)

 This is usually a CallLibObj() instruction

 Lab2 Points to the RefPoint() instruction used

 with this object. This must be a normal

 refpoint with an scale factor.

 Lab3 Points to the RotatedCall() used with this

 object. Set it to :[0] if not used.

 fl Flags, purpose unknown, maybe reserved for

 internal use. Set it to 0.

 dens scenery density code (min) for this object

 -

 Test for crash detection. Usually used for

 BGL library objects in normal scenery BGL's.

 This command should not be used in library objects.

 The called library object must do the crash

 detection (see CrashStart).

 Example:

 Area(A 51:30 -00:11 100)

 IfVarRange(: 346 2 32767)

 CrashIndirect(:Obj :RefP :Rotate 0 2)

 ShadowCall(:RefP)

 PerspectiveCall(:Start)

 Jump(:)

 ;

 :Start

 Perspective

 :RefP

 RefPoint

 (rel :EndP 0.5 51:30 -00:11 V2= 260)

 :Rotate

 RotatedCall(:Obj 0.0 0.0 -140.90)

 :EndP

 Return

 ;

 :Obj

 CallLibObj

 (0 9797FC57 8A930060 11D14AC5 A028DC53)

 Return

 ;

 EndA

CrsahStart(:Lab rad)

I_96(:Lab rad) ; obsolete

 - 2.43 / FS2K

 Lab continue at Lab if no crash

 rad object ground radius in meter

 -

 Used in object libraries for crash detection

 codes. It seems this insruction also acts as a

 switch which decides whether to execute the crash

 detection code or the display code.

 Maybe the crash detection code is only executed

 if invoked from CrashIndirect().

 This is a typical start code sequence of an

 simple library object:

 ...

 LibObj(...)

 CrashStart(:Object 54)

 CrashBox(:NoCrash 0 18 0 32 25 82 0 0 0)

 SetCrashCode(14)

 :NoCrash

 Return ; end of crash test

 ;

 :Object

 ; here follows the normal object code

 ...

CrsahSphere(:Lab rad)

I_97(:Lab rad) ; obsolete

 - 2.43 / FS2K

 Lab continue here if outside the sphere

 rad object 3D radius in meter

CrashBox(:Lab xofs zofs yofs xwid hig ywid p b h)

I_98(...) ; obsolete

 - CFS FS2K

 This is a crash detection box which can be

 shifted and rotated.

 The jump to :Lab is performed if plane is not in the

 box. Longitudinal units are scale factor dependant.

 Only found in 3D library objects.

 -

 xofs the center of the box is shifted in E-W

 direction

 zofs -"- up down direction

 yofs -"- N-S direction

 xwid total width in E-W direction

 hig total hight

 ywid total width in N-S direction

 p pitch angle

 b bank angle

 h heading angle

SetCrashCode(code)

 - CFS/FS2K

 This instruction sets the crash code. Used in 3D

 library objects.

 -

 code any value different than 0 seem to trigger

 a crash normally code 14 is used.

 2 mountain

 4 general

 6 building (eye position)

 8 splash

 10 gear up

 12 overstress

 14 building (plane position)

 16 aircraft

 18 fuel truck

 20 object

ZBias(z_bias)

 - 2.43 / FS2K

 z_bias z bias value (integer)

 typical values 0, 7

 -

 This command will add a bias to an objects distance.

 This instruction is often found together with

 VecPoints() and LoadBitmap() commands in

 MDL files.

 -

 ...

 ZBias(1)

 VecPoints(...)

 ZBias(0)

 Specular(0)

 LoadBitmap(0 1 EF 43 255 0 decal.bmp)

 ShadedTexPoly(...)

 ...

IfInF(:Lab32 var f_low f_high)

 - 2.43 / FS2K

 This is a new IfVarRange instruction using

 floating point numbers and 32 bit labels.

 (if in range - floating point version)

 -

 Lab32 Address to continue if not in range

 var variable number to test (hex)

 Note: In the moment the size and format

 of this variable is unknown.

 f_low low value in floating point format

 f_high high value in floating point format

LightBeamCall(:Label varptr vx vz vy) -> SCASM 2.01

LandingLights(:Label varptr vx vz vy) -> FS98SDK

 - FS5 - FS98

 This instruction is used to generate the aircrafts

 landing lights in FS versions 5.0 to 98.

 -

 varptr points to a set of local variables which

 holds the position data of this object.

 vx

 vz

 vy the vector components of the light beam

Light(vattr type ox oz oy

 intens liat sqat a r g b

 direction

)

 - 2.43 FS2K

 vattr vector attributes

 the only allowed values are:

 m this tells SCASM that the vector

 data are in component form (x z y)

 p this tells SCASM that the vector

 data are in polar coordinates and

 needs to be converted to FS format.

 type type of light

 0 beacon

 1 ?

 2 ?

 3 taxi light

 4 nav light

 5 landing light

 6 strobe

 9 project landing light on ground

 only (FS8)

 10 proj. taxilight on ground only

 11 draw landing light cone only

 12 draw taxi light cone only

 ox offset values, usually 0.0

 oz

 oy

 intens intensity, typical values are 20, 40

 (currently not used by FS)

 liat linear attenuation factor (normaly 0.6)

 (currently not used by FS)

 sqat squared attenuation factor (normaly 0.4)

 (currently not used by FS)

 argb color

 typical values:

 FF 255 255 255

 F5 255 255 255

 FF 255 0 0

 00 255 255 0

 direction

 Light direction vector.

 (currently not used by FS)

 FS uses vector data in normalised

 component form giving a vector with the

 length of 1. For this reason non of the

 3 vector components can be larger than 1.

 If vattr = m the direction vector is

 expected in x-z-y component form

 (-0.1715 0.1585 -0.9724).

 For humans it is easier to express the

 direction vector in polar coordinates

 which is elevation angle (positive = up)

 and heading angle. This data is expected

 if the p flag is set.

 Note: From user reports it seems that FS2K ignores

 the offset values and the light direction vector.

 So the only to move and rotate the light beam is

 to use the Transform_Mat() instuction.

 Note2: Some of the above parameters are not

 longer mentioned in the latest SDK. They are

 labled as reserved or "currently not used" and

 should now be set to 0.

BglSelect(var msk :List32)

 - 2.43

 found in G3D.DLL

 -

 var offset to a local variable containing

 an index for the BGLList (EnumBitmaps)

 command.

 msk shift mask

 constant index if var = 0

 List32 relative 32 bit offset (label) to the

 BGLList() command

VarSeg(hex_val_16)

 -

 Found in G3D.DLL

VFileMarker(num)

 - 2.43

 num decimal number

 -

 Used in MDL's

Var2Low64k(d s)

 -

 According to the FS98 SDK this instruction transfers

 a variable from var_seg to low64k_seg.

Low64k2Var(d s)

 - 2.40

 According to the FS98 SDK this instruction transfers

 a variable from low64k_seg to var_seg.

CopyVar(to from)

 - 2.40

 According to the FS98 SDK this instruction copies

 one variable into an other. (not tested)

CallInd(var)

 -

 var variable number (hex)
