SCASM 2.85

pseudo commands

and more

Pseudo commands are commands that do not produce any code. They are used to send aditional instructions or information to the assembler itself.

Set(flag value)

 -

 This is a SCASM configuration command to set some

 internal flags and variables.

 -

 table of flag/variable names:

 ppperr Number of points per polygon to trigger the

 error message. Default = 100.

 RAW If set to 1 the RAW output is enabled.

 The -RAW command line switch is not longer

 needed.

 LOGFILE 1 enables error output to "SCAERROR.LOG"

 Same as "-l" command line switch

 MAPFILE 1 enables the mapfile (.MPF) output

 -> -m

 OBJID This flag controls the object ID generator

 when object libraries are compiled (2.36+).

 1 (default) ID0 value is incremented

 0 ID3 value is incremented. Only needed

 for backward compatibility with FS98 style

 library format.

 BUF wanted buffer size in KB. This option is

 only needed for compiling large RAW BGL

 sections for MDL files of more than 100kB

 size or for very large numbers of

 synth tiles or nav aids.(v 2.43)

 Note, the buffer size has nothing to do

 with the maximum code size of an Area()

 command. This size is limited by the

 binary format of the BGL command(s).

 Use this option before increasing the

 AREAMX threshold.

 areamx Maximum allowed size of an Area() block in

 KB. Default = 16, maximum 64.

 area15mx Maximum allowed size of an Area15() block

 in KB. Default = 16, maximum 64.

 LABELS sets the size of the internal symbol

 table. The default size is 1500. You

 only need to increase this number if you

 are working on very large MDL files.

 (version 2.45 and later)

 PATCHES As all one-pass assemblers SCASM needs

 a patch table. The size of this table

 should be about 1.3 to 1.5 of the

 maximum label number.

 Default value is 2000.

 (version 2.45 and later)

 LINBUF This option sets the size of the internal

 line buffer. You will only need to

 increase the default size of 20 KB if

 you get an "Line buffer overflow" error

 during compile time. This sometimes

 happens with point lists of very large

 objects.

 This option is mainly the same as the

 -LB command line switch.

 The only difference is that the wanted

 size must be entered in KB.

 MAXENTRY Sets the maximum size of the object entry

 index table. The default size is 3500.

 A larger size is only needed for a large

 number of objects which needs to be

 sorted, such as navaids or classic

 Synth Tiles.

 MAXPTLST Sets the maximum number of points in the

 point list buffer (Points(), VecPoints()).

 Default size is 1000.

 For it's automatic vector calculation

 feature, SCASM needs to have ALL point

 coordinates for all point numbers

 available all the time.

 interr Same as -i switch, 1 = ignore integer

 errors. Default = 0

 fmtcast Same as -f switch, 0 = format casting

 disabled. Default = 1

 -

 A change of some of these values may probably result

 in display problems in older FS versions.

 Set commands should be placed at the beginning of

 the source code file.

Include(filname.ext)

 -

 Includes this text file. The file is simply copied

 into your 'main' source file. In SCASM 2.10 and later

 an include file can contain other Include()'s or

 Macro()'s.

 Any correct path/filename is accepted (up to 260

 characters).

 This makes it possible to make a 'main' file like

 Header(...)

 LatRange(...)

 Include(...)

 ...

 Include(...)

 with all the other commands in the Include() files.

 Note, Include()'s are handled now as Macro()'s

 without parameters. You cannot use them to increate

 the nesting level.

Macro(filename.scm p1 ... pn)

 -

 Similar to include files the text of an macro file

 is simply copied into your source file. But the

 advantage of an macro is that parameters can be

 passed to it. These parameters are inserted into the

 text during compile time. This makes it very easy to

 'recycle' scenery objects. If you want to design

 a house, it is usually a good idea to do this as a

 macro file and use the strings %1 and %2 for the

 latitude and longitude values of its position.

 Now you can put this house into your scenery simply

 by puting its actual Lat/Lon position as parameters

 one and two into the Macro() instruction. SCASM

 allows up to 30 parameters and each can have 32

 characters.

 Macros are allowed in visual scenery (section 9),

 dynamic scenery (section 15) and section 16.

 In SCASM 2.10 and later macros are allowed to contain

 other macros. This nesting is limited to 8 levels,

 and Include()'s are handled now as macros without

 parameters.

 If a macro (file) name or a macro parameter contain

 spaces you have to use " to mark the begin and end of

 it (SCASM 2.15 and later).

 example:

 macro call: macro(example.scm N54:10 E10:05)

 macro file: Area(5 %1 %2 20)

 -> %1 is replaced by N54:10

 -> %2 is replaced by E10:05

 Note: In most cases macros will contain a whole

 Area() block. But if you are using the macro feature

 to generate some code within an area (for example

 'hand made' aproach lights in an runway area), and

 if you are using the same macro more than once in

 the same area, and if the macro contains label

 definitions you will get an "duplicated label error".

 To avoid this you can include the special '@'

 character in the label name. This character causes

 SCASM to insert the internal macro counter in the

 Label name. Since the internal macro counter is a

 3 digit code the name is then limited to 12

 characters.

 example:

 :Label@ is expanded to :Label095 during the

 expansion of the

 95th macro.

Mif(<expression>)

Melse

Mifend

 -

 These pseudo commands are used to enable and control

 conditional compilations. In earlier SCASM versions

 they are only used in macros for visual scenery.

 That's why they have the "M" in the name. Now they

 can be used anywhere in the source text and they

 even can be nested (up to 8 levels).

 <expression> can be a mathematical formula or a

 single number.

 -

 mif(%1)

 mif([%2 == 3])

 The macro parameter 1 is tested.

 If it's value is NOT 0

 (that is TRUE) the following commands

 are compiled. Only a zerotest is

 done.

 In example 2 the expression

 "[%2 == 3]" is evaluated and then

 tested.

 see -> annex 1 for expressions and

 operators.

 melse Optional. If the 'mif(%#)'

 condition is FALSE

 this section is compiled by the

 assembler.

 mifend Marks the end of the conditional

 compilation.

 If an error is detected and the compiling condition

 is FALSE, then the error messages will have the line

 number of the Mifend command.

GRP(<Lat> <Lon>)

 -

 This command writes the given position to a

 SCASM internal General Reference Point memory

 so it can be used later to calculate new

 positions.

 -

There are two levels of stored positions, one defined outside of an Area() - EndA block and another defined inside.

Every time an Area() command is compiled with direct Lat/Lon values, the position is stored into a temporary memory. This position is valid until the EndA command is executed. But the new Lat/Lon position is not stored if it is a calculated one, using the "d" or "r" option. This means that all calculations are done with the position defined outside the area block.

If you want a new base for calculations you have to use direct Lat/Long values in the Area() command or insert a new GRP() command following directly the Area() and use the same calculations. This new GRP will be deleted at the end of the area giving you back the old position defined outside the area block.

You can use the stored position to calculate a new referencepoint position in every command that requires a Lat/Lon pair input.

There are two options to calculate a new position:

 d <delta_Lat/north-south> <delta_Lon/east-west>

 r <heading> <distance>

If your new position is 150 meters east and 60 meters south of the stored position you can enter:

 RefPoint(abs :Label 1.0 d -60 150)

and SCASM will calculate the new reference point.

If your new position (i.e. for LandMe) is 400 meters away in

heading 273.4 degrees you can enter:

 LandMe (r 273.4 400 0 90

 r 93.4 400 0 27

)

Do not use this feature for long distances.

CopyRight(any text with up to 80 characters)

 -

 Traditionaly many 3rd party scenery tools insert

 a text signature in the output file. Typically

 this is the name and version of the tool which

 generated this file. SCASM does the same.

 This instruction lets you add your own text to

 this signature.

 This text has no effect to FS. This command

 should be used only once per source/BGL file.

 If this command is found more than once, only

 the last one is used (no error message). For

 this reason it is not a good idea to use it in

 a macro file.

 No underscores '_' are needed for SPACE characters

 in the text.

Uvar($name value)

 -

 This is an internal command to set an SCASM internal

 user variable. This command has no effect to the BGL

 code. User variables can be used by experts for more

 flexible parameter calculations.

 Note: variables which are defined within an Area()

 are only valid in this Area() and are deleted when

 the EndA statement is compiled. Other variables are

 always valid and are even visible from macros and

 includes.

 SCASM can handle up to 200 user variables.

SCASM internal variables / constants

 -

 Besides user variables there are some other

 internal values which might be of interest.

 -

 $IC internal instruction counter,

 valid in Area()'s

 $PI The number PI = 3.414 (2.02)

 $Section This is SCASM internal section

 bitmask.

 There is only one bit set for

 the currently scanned section

 (i.e. 0x001 for section 0 = nav

 or 0x200 for section 9 = visible

 scenery).(2.03)

 $Version The SCASM version number * 100

Map(stat)

 -

 This is another internal command which can be used

 to suppress the map file generation for some parts

 of the source code file.

 See also the "-m" command line option.

 -

 stat	1 = on,

 0 = off

 -

 For more information please see the documentation

 which comes with the BGLTST.EXE program which uses

 this information to display the source code line(s)

 related to an detected error.

Error(any error message)

 -

 This pseudo command produces an error message and

 stops SCASM.

 This instruction can be used as a reminder for

 changes you want to do later or to ensure that a

 specific source file (macro) is compiled with the

 correct SCASM version.

 For example, if internal functions (version 2.02

 and later) are used for the parameter calculations,

 you can use this instruction to notify the user

 that he needs an compiler update:

 ...

 mif([$Version < 202])

 Error(You need at least SCASM 2.02 to

 compile this code)

 mifend

 ...

 Points(0

 -15 0 int[%6 / 2]

 ...

)

 ...

 In this example the macro receives a parameter from

 the caller. If the %6 macro parameter has the value

 15 the result would be 7.5. Since FS does not accept

 fractional numbers in point coordinates, an error

 message is normally generated. The int[] or the

 round[] function can now be used to convert the

 number format but these are not available in earlier

 versions.

VTrace(mask "any text" <expression>)

 -

 This is an SCASM internal test command for debugging.

 It does not produce any code. You can use this

 command if you want to know the result of of some

 SCASM calculations.

 The output is done to the standard error device,

 which is the screen or the "SCAERROR.LOG" file.

 -

 mask This is a bitmask in HEX format to

 indicate the section when this command

 shal be executed. If you are unsure

 about this value set it to -1

 (or 200 for section 9, visual scenery).

 "any text" Any text you want to see on the output

 device. (max 120 chraracters)

 <expression>	Any valid expression in SCASM syntax.

Calculations

When I started the SCASM project it never came to my mind that it could become necessary to do calculations and so there is no delimiter character to separate parameters. For this reason SCASM needs some help. This is why you have to use squared brackets "[]" in every arithmetic expression.

Expressions are always evaluated from the left to the right

regardless of the common mathematical rules. The only way to change this is to use nested brackets. Expressions can also contain macro parameter numbers like this:

 [[90 - %3] / 45]

In expressions the following operators are allowed:

 +

 -

 *

 /

 == equal (comparison)

 != not equal

 < less than

 <= less or equal

 > greater than

 >= greater or equal

 | OR (bitwise)

 ^ exclusive OR

 & AND (bitwise)

 << shift left

 >> shift right

It is also possible to "cast" the number format.

 Some examples:

 0xAB23 hex format, with "0x" prefix

 0b101010101 binary format, with "0b" prefix

 0d12345 decimal format, with "0d" prefix

 0b1010101 binary format,

To avoid problems with the current number format recognision routine please use only upper case charaters for hex numbers and use only lower case characters in the "number cast" sequences

 "0x..." & "0b..." & "0d...".

The expression evaluator is called for every numeric parameter input. If the evaluator is called without the "[" at the beginning of the expression, it stops at the first space charater. Therefore I strongly recommend to use the brackets and separate the elements of the expression by spaces. This will also increase the readability of the source code.

Since SCASM is a one_pass assembler :Label's in arithmetic expressions cannot be used, if these :Label's are defined in a later source text line. This is because the :Label is still undefined when the expression is evaluated.

All calculations are done at compile time, NOT at runtime.

Functions (vers. 2.02 and later)

To improve the parameter calculations there are now some functions available. Please remember, all calculations are done at compile time. Function names are case sensitive.

 int[<expression>]

 This function converts the result of

 <expression> into an integer number by

 truncating the fractional part.

 round[<expression>]

 This function converts <expression> into an

 integer number by doing a normal round

 up/down.

 sqrt[<expression>]

 This calculates the square root of

 <expression>. The result is still a

 floating point value. If needed you

 can use:

 round[sqrt[100 / 2]]

 abs[<expression>]

 This function makes sure that the result

 of <expression> is always a positive number.

 sin[<expression>]

 cos[<expression>]

 tan[<expression>]

 asin[<expression>]

 acos[<expression>]

 atan[<expression>]

 atan2[<expression> <expression>]

 This is the atan2(y / x) function. Format

 corrected in version 2.07

 adrpat[:Label]

 This address patch funktion is a workaround

 for the address calculation problem in

 Dwx() commands in the case the label is

 defined in a later line of the source code.

 This function simply adds the current

 address to the internal patch table and

 returns a 0 value which will be patched

 later. (v.2.04)

 ipt[index flag]

 -

 version 2.07

 index the wanted point's index number

 flag selects the coordinate element

 (x, y, or z) of that point.

 -

 This function imports point coordinates from

 an existing SCASM internal point list.

 For example, you have defined an point list

 somewhere in an Area(). SCASM holds an

 internal copy of this list for the polygon

 vector automatic function. This function

 gives you access to this list, so you can

 copy coordinates to instructions which do

 not accept point numbers.

 If you want to draw a dotted line with

 7 dots from, lets say, point number

 5 to 6 of your list, you can write:

 DotLine(ipt[5 x] ipt[5 z] ipt[5 y]

 ipt[6 x] ipt[6 z] ipt[6 y] 7)

 geopt[Lat Lon Alt]

 - vers. 2.52

 This funktion is a very tricky one.

 It expects point coordinates in a

 geographic Lat/Lon/Alt format and converts

 them into the usual x-z-y format using

 the last referencepoint data. The result

 is written back into SCASM's input buffer.

 Using this dirty trick you can use the

 Lat/Lon/Alt format with nearly every

 command which expects x-z-y data.

 The altitude is expected in meters.

 This function fails if there is not

 enough space for the replacement text

 at the beginning of the current input

 line. If this happens simply insert some

 space characters.

 ...

 DotLine(geopt[60:00:59 w2:0:59 0]

 geopt[60:00:60 w2:0:59 0]

 30

)

 ...

Information about aditional texture handling options

Sometimes it is pretty difficulty to find the correct X-Y-coordinates for textured polygons. One of the most common examples for this are mountains.

If you are such an lazy scenery designer like me <g> you can try the different features of the bitmap automatic. In this version bitmaps are always aligned to the lower edge or the lowest point of the polygon.

Texture automatic is limited to polygons with a maximum of 16 vertices (vers. 2.29 and later).

 T enables Texture Point calculation automatic

 for any ..TexPoly's. SCASM tries to use the

 whole texture map, but the aspect ratio is

 maintained. Only valid with ..TexPoly's

 B The same as above, but texture aspect ratio

 is not maintained. This may result in a

 different scaling for the bitmap in x- and

 y- direction. Only valid with ..TexPoly's

 R This flag reverses the bitmap in y direction

 (up/down). Only valid with ..TexPoly's. This

 works only with the T or B flag active.

 aditional flags in version 2.04

 S scale

 maybe changed in next version !!!

 With the above flags allone you cannot

 control the size of the pixels (scaling).

 If this flag is used SCASM expects a

 scaling factor for the next parameter. The

 scaling factor can be a fractional number

 or even an expression.

 This scale factor can be calculated as:

 (last_usable_pixel

 - first_usable_pixel) / longest_dist

 If you want to use the whole bitmap and your

 distance is 25 meters for your largest

 polygon edge, this is simply:

 255 / 25 = 10.2

 This scale factor is used for X and Y

 scaling.

 L x1 y1 x2 y2

 This flag indicates that 4 aditioanl

 parameters follow.

 These parameters are bitmap coordinates to

 limit the usable bitmap area for this

 polygon. SCASM tries to stretch this area

 to fit the polygon. If this flag is not

 used SCASM asumes

 x1 = 0, y1 = 0, x2 = 255, y2 = 255

 for the first and the last usable pixel.

 This is the whole bitmap.

 N No reset of the S and L values.

 Normally the scale factor and the limit

 values are resetted everytime a polygon

 is computed. If you want to use the

 values from a previously defined polygon,

 use this flag to tell SCASM not to reset

 these values.

 example:

 ...

 TexPoly(ats [127/25] L 0 0 127 127 0 1 2)

 TexPoly(atn 1 2 3)

 ...

 In this example only a small part of the

 bitmap is used and the bitmap scale factor

 is calculated to fit a polygon with up

 to 25 meters width (x) and height (y).

 The second polygon is calculated with the

 same scaling and pixel limits since the

 previous values are not resetted.

Some important BGL section numbers and their hex bitmask values internally used by SCASM. Used in section mask's in Mif() and SCLINK. You can omit leading 0's.

 section bitmask

 0 00001 Nav frequencies (ILS, VOR)

 1 00002 Synth tiles (Seed) size 1 to 6

 ...

 6 00002 Synth tiles size 6 (smallest, high

 priority / all tiles are internally

 handled with the same mask by SCASM)

 7 ----- n/a

 8 ----- n/a

 9 00200 visual scenery

 10 00400 object library

 not handled by SCLINK

 11 00800 Airport menu (FS6 and before)

 13 02000 ATIS

 14 04000 NDB

 15 08000 dynamic scenery

 16 10000 Markers, LandMe, TimeZone,

 elevated surface

 19 80000 exclusion and exception data

 20 100000 AFD data

 not handled by SCLINK
