

BusyObjects Manual v1.0
Copyright © 2002 by Bernd R. Fix. All Rights Reserved.

2003/03/19

This work is freeware and must not be used as part of any commercial products
without written permission of the author. Results produced with this work contain
code and data that are part of the work; therefore results have the same restrictions
as the original work and must not be used in commercial products without
permission. Contact the author at brf@brainon.ch for more information.

Preface

BusyObjects is a technology that exploits a new way of animating objects in
static FS2k+ sceneries. It allows you to play animations at varying speeds,
begin (and end) animations at any time and have complex path definitions for
the animated object. Since the object is rendered at different positions for
(nearly) every frame, the object transformation appears very smooth.
This manual explains the installation of the BusyObjects Compiler and the
format of the compiler parameter.

PREFACE... 1

INSTALLATION ... 2
UNPACKING THE ARCHIVE... 2

SETTING ENVIRONMENT VARIABLES.. 2

RUNNING THE COMPILER .. 3

FORMAT OF PARAMETER FILES .. 4
IMPORT SECTION ... 4

ANIMATION SECTION... 4

EXPORT SECTION... 6

mailto:brf@brainon.ch

Installation

Unpacking the archive

To install the BusyObjects framework you simple un-zip the archive
BusyObjects-1.0.zip into a directory of your choice (<INSTDIR>). The
package will create a new sub-folder BOC\; just make sure you have activated
the “Use folder names” option when unpacking the archive.
After installing the package, you will see the following files and folders:

<INSTDIR>\BOC\ // Base directory
 BOC.EXE // compiler executable
 BOC.ico // Windows icon
 Licence.txt // please read this first
 GMAX\
 BusyObjects.ms // gmax export script
 BO_ImportSCA.ms // gmax import script
 DOCS\
 Manual-1.0.pdf // this file
 Tutorial-1.0.pdf // tutorial
 LIBRARY\
 Y-Complex.API // complex animation example
 Y-Simple.API // tutorial animation
 PROJECTS\
 Readme.txt
 EXAMPLE\ // tutorial example
 Example.bod // compiler parameter
 Example.gani // gmax animation data
 Example.API // compiled API
 Example.gmax // gmax model used
 Example.tpl // export template
 Example.sca // import SCASM file

Setting environment variables

To access the compiler from the command line without specifying the complete
path every time, I also recommend you add the <INST>\BOC\ directory to the
PATH environment variable.
Later versions of the framework will also use a new environment variable called
BOCDIR. This variable should hold the name of the top-level installation
directory of the framework (<INST>\BOC\).
In a shell you can use the commands:

set BOCDIR=C:\FS2002\BOC
set PATH=%PATH%;%BOCDIR%

But you better make these settings permanently; If you are unsure how to do
that – please consult the documentation for the OS version you use.

Running the compiler

The compiler is a generic “translator” between input data (the (raw) animation
data) and BGL animations that can playback in MSFS.
The only format of input data currently handled is the format that is produced by
the BusyObjects gmax script and the only output format is API macro creation. I
will extent the compiler to support other input and output formats as needed.

To start the BusyObjects Compiler, enter the following command in a shell:

BOC parameter.file

where parameter.file specifies a file containing the parameters for the
compiler run.
Usually you start the compiler in the project directory where parameter, import
and export files are located. If you don’t add the compiler path
(<INSTDIR>\BOC) to the environment variable PATH, you have to specify the
absolute path to the BOC executable.

Format of parameter files

A parameter file is a plain ASCII file that contains definitions needed for a
compiler run. All lines starting with ‘#’ are treated as comments and are not
further analysed.
There are three sections with their own set of parameters; all parameters are
mandatory. Incomplete parameter files are treated invalid and cause the
compiler to stop.
The sequence of definitions can vary; if a variable is set a second time in the
same file, the last definition is used.

Import section

The import section defines the source and format of the raw animation data that
is used to compile the animation:

ImportFormat=gmax

The ImportFormat variable is used to define the format for the raw
animation data. Until now only gmax is a valid import format.

ImportFile=Object1.gani

The ImportFile variable specifies the file that contains the raw
animation data. If the file is not located in the directory where you start the
compiler, you might have to specify an absolute path for the file here. If you
specify a relative path, it is always relative to the directory where the
compiler is started.

Animation section

The Animation section defines parameters that influence the way the animation
will be compiled and later rendered in MSFS:

Invariants=ZPB

The Invariants setting lists all degrees-of-freedom that are not
animated and should be treated constant. If you move a truck around (over
flattened ground), the Z-position of the vehicle never changes – it is
invariant. Any of the six degrees-of-freedom that can be animated for a
single object can be flagged invariant: X-pos, Y-pos, Z-pos, Pitch, Bank
and Heading (The beta version can’t handle that yet. This only leads to
more data being processed than necessary – next version will do).

Scale=0.01

The Scale parameter defines the scale used in the animation. Think of
this value as the resolution of movement. A larger scale is less accurate,
so it is best to choose the smallest scale possible for the animation. On the
other hand, if the animation spans a larger area, the scale might be limited
to a certain value. I recommend using a scale setting of 0.01; this results in
a spatial resolution of 1 cm. This should be accurate enough for any
animation in the MSFS environment.
It also makes modelling the animated object easier if you have a fixed
scale; otherwise you will have to remodel the animated object for every
path it moves.
If you want to calculate the optimum scale, use the following procedure:
Take the longest span in any dimension (X, Y, Z) in meters and divide that
value by 65536. The result is the smallest scale possible for the animation.
If you don’t want to calculate this optimal scale yourself, you can specify a
scale of –1.0 and the compiler will calculate the best scale for you. Using
scale settings below 0.01 might be problematic with “Airport for Windows”.
For more info on the scale and object modelling problematic can be found
in the tutorial.

ModelScale=0.5

The ModelScale parameter defines the scale used for the model (object
drawing code). This scale can be different from the animation scale (and
certainly is in case if the animation is auto-scaled). This value is needed to
glue the different scales automatically in the compiler.

Type=1

The Type parameter specifies what kind of animation is to be generated.
Possible values are:
0 for cyclic animations (animations that run forever),
1 for idle/active animations (animations that start and end on a trigger) and
2 for multi-stage animations (hierarchical animations)
Currently only type 1 animations can be produced by BOC.

Duration=450

The Duration parameter specifies the desired duration of the animation.
Even the flexible time code generation of the BusyObjects framework is not
able to handle animation of varying length over a full time code interval.
There are eleven durations (in seconds) in BOC that span a full time code
interval: 3641, 1820, 910, 455, 228, 114, 57, 28, 14, 7, 4 – that is ranging
from 4 seconds to over one hour. If you can choose the duration freely, try
to use one of the specified values or values slightly smaller (but never
larger!) then the listed values. This yields best results during playback.

Export section

The export section defines the target and format of the compiled animation:

ExportFormat=API

The ExportFormat variable is used to define the format of the compiler
output. Until now only API is a valid export format.

ExportFile=Object1.API

The ExportFile variable specifies the file that will be used to save the
compiler output. If you want the file in another directory as where you start
the compiler, you might have to specify an absolute path for the file here. If
you specify a relative path, it is always relative to the directory where the
compiler is started.

ExportTemplate=Object1.tpl

The ExportTemplate variable specifies the file that is used as a
template for the macro header, object rendering code and the state
machine.

	Preface
	Installation
	Unpacking the archive
	Setting environment variables

	Running the compiler
	Format of parameter files
	Import section
	Animation section
	Export section

